endomorphin-1 and Nociceptive-Pain

endomorphin-1 has been researched along with Nociceptive-Pain* in 2 studies

Other Studies

2 other study(ies) available for endomorphin-1 and Nociceptive-Pain

ArticleYear
Novel Endomorphin Analogs Are More Potent and Longer-Lasting Analgesics in Neuropathic, Inflammatory, Postoperative, and Visceral Pain Relative to Morphine.
    The journal of pain, 2017, Volume: 18, Issue:12

    Activation of the mu-opioid receptor provides the gold standard for pain relief, but most opioids used clinically have adverse effects that have contributed to an epidemic of overdose deaths. We recently characterized mu-opioid receptor selective endomorphin (EM) analogs that provide potent antinociception with reduction or absence of a number of side effects of traditionally prescribed opioids including abuse liability, respiratory depression, motor impairment, tolerance, and inflammation. The current study explores the effectiveness of these EM analogs relative to morphine in four major pain models by intrathecal as well as intravenous administration in male Sprague Dawley rats and subcutaneous administration in male CD-1 mice. In the spared nerve injury model of neuropathic pain, mechanical allodynia and mechanical hyperalgesia were assessed with von Frey and Randall-Selitto tests, respectively. In the paw incision model of postoperative pain, von Frey testing was used to assess mechanical allodynia and thermal hyperalgesia was evaluated with Hargreaves testing. In the Complete Freund's Adjuvant model of inflammatory pain, thermal hyperalgesia was assessed using Hargreaves testing. In CD-1 mice, visceral pain was assessed with the acetic acid writhing test. In all cases, EM analogs had equal or greater potency and longer duration of action relative to morphine. The data suggest that EM analogs, particularly analog 4 (ZH853), could provide effective therapy for a diverse spectrum of pain conditions with low risk of adverse side effects compared with currently used opioids such as morphine.. Novel EM analogs show equal or greater potency and effectiveness relative to morphine in multiple pain models. Together with substantially reduced side effects, including abuse liability, the compounds show promise for addressing the critical need for effective pain relief as well as reducing the opioid overdose epidemic.

    Topics: Analgesics, Opioid; Animals; Disease Models, Animal; Hyperalgesia; Inflammation; Injections, Intravenous; Injections, Spinal; Male; Mice; Morphine; Neuralgia; Nociceptive Pain; Oligopeptides; Pain, Postoperative; Peptides, Cyclic; Rats; Rats, Sprague-Dawley; Visceral Pain

2017
Endomorphin-1 analogues (MELs) penetrate the blood-brain barrier and exhibit good analgesic effects with minimal side effects.
    Neuropharmacology, 2015, Volume: 97

    Endomorphins are endogenous opioid peptides in mammals and display a strong antinociceptive effect after central administration. However, the clinical usage of these peptides is limited because of their diminished analgesic effect following systemic injection and their inability to cross the blood-brain barrier. In this study, we characterized the in vivo effects of four novel endomorphin-1 analogues (termed MELs), which previously showed potential as highly potent analgesics with a good pharmacological profile in vitro. The analogues were administered intravenously to several rodent pain models to examine their antinociception and blood-brain barrier permeability. The tested peptides, especially MEL1214, showed good analgesic activity and blood-brain barrier permeability. Behavioral studies showed dose-dependent analgesic effect after systematic administration of MEL1214 in the tested pain models. Pre-treatment of subcutaneous administration of naloxone methiodide did not affect the antinociception of these peptides. As compared to morphine, MEL1214 was less prone to induce tolerance after consecutive intravenous administration for 5 days. Gastrointestinal transit was evaluated by the isolated colon response and bead expulsion to determine the potential constipation effect. In contrast to morphine, MEL1214 produced no significant constipation effect at an equivalent dose. MEL1214 shows promise as a suitable compound to treat pain with reduced side effects, and exhibits good potential to be further developed as a novel opioid analgesic in pain treatment.

    Topics: Analgesics, Opioid; Animals; Blood-Brain Barrier; Capillary Permeability; Colon; Constipation; Disease Models, Animal; Drug Tolerance; Male; Mice; Morphine; Naloxone; Narcotic Antagonists; Nociceptive Pain; Oligopeptides; Quaternary Ammonium Compounds

2015