endomorphin-1 has been researched along with Neuroblastoma* in 6 studies
6 other study(ies) available for endomorphin-1 and Neuroblastoma
Article | Year |
---|---|
Interleukin-1 beta-induced up-regulation of opioid receptors in the untreated and morphine-desensitized U87 MG human astrocytoma cells.
Interleukin-1beta (IL-1β) is a pro-inflammatory cytokine that can be produced in the central nervous system during inflammatory conditions. We have previously shown that IL-1β expression is altered in the rat brain during a morphine tolerant state, indicating that this cytokine may serve as a convergent point between the immune challenge and opiate mediated biological pathways. We hypothesized that IL-1β up-regulates opioid receptors in human astrocytes in both untreated and morphine-desensitized states.. To test this hypothesis, we compared the basal expression of the mu (MOR), delta (DOR), and kappa (KOR) opioid receptors in the human U87 MG astrocytic cell line to SH-SY5Y neuronal and HL-60 immune cells using absolute quantitative real time RT-PCR (AQ-rt-RT-PCR). To demonstrate that IL-1β induced up-regulation of the MOR, DOR and KOR, U87 MG cells (2 x 105 cells/well) were treated with IL-1β (20 ng/mL or 40 ng/mL), followed by co-treatment with interleukin-1 receptor antagonist protein (IL-1RAP) (400 ng/mL or 400 ng/mL). The above experiment was repeated in the cells desensitized with morphine, where U87 MG cells were pre-treated with 100 nM morphine. The functionality of the MOR in U87 MG cells was then demonstrated using morphine inhibition of forksolin-induced intracellular cAMP, as determined by radioimmunoassay.. U87 MG cells treated with IL-1β for 12 h showed a significant up-regulation of MOR and KOR. DOR expression was also elevated, although not significantly. Treatment with IL-1β also showed a significant up-regulation of the MOR in U87 MG cells desensitized with morphine. Co-treatment with IL-1β and interleukin-1 receptor antagonist protein (IL-1RAP) resulted in a significant decrease in IL-1β-mediated MOR up-regulation.. Our results indicate that the pro-inflammatory cytokine, IL-1β, affects opiate-dependent pathways by up-regulating the expression of the MOR in both untreated and morphine-desensitized U87 MG. Topics: Analysis of Variance; Astrocytoma; Cell Line, Tumor; Colforsin; Cyclic AMP; Drug Interactions; Gene Expression Regulation, Neoplastic; Humans; Interleukin 1 Receptor Antagonist Protein; Interleukin-1beta; Morphine; Naloxone; Narcotic Antagonists; Narcotics; Neuroblastoma; Oligopeptides; Radioimmunoassay; Receptors, Opioid; RNA, Messenger; Time Factors; Up-Regulation | 2012 |
Functional coupling of mu-receptor-Galphai-tethered proteins in AtT20 cells.
Opioid efficacy on mu-receptor may be influenced by various Gi/o-G-protein subunits interacting with intracellular face of receptor. Pertussis toxin-insensitive Galphai1 and Galphai2 subunits tethered with mu-receptor were stably transfected into AtT20 cells to (i) determine coupling of different alpha-subunits on opioid efficacy, and (ii) determine coupling to downstream effectors, for example, calcium and potassium channels. After pertussis toxin, stimulation of [35S]GTP-gamma-S incorporation persisted. Both constructs were able to couple to native calcium and potassium channels, with endomorphins 1 and 2 equally effective. However, pertussis toxin abolished opioid actions on calcium and potassium channels suggesting strong coupling to endogenous G-proteins, and that differences in coupling efficacy to Galphai1 and Galphai2 previously observed are restricted to initial step of signaling cascade. Topics: Analgesics, Opioid; Animals; Calcium Channels; Cell Line, Tumor; Colon; Diprenorphine; GTP-Binding Protein alpha Subunits, Gi-Go; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Mice; Neuroblastoma; Oligopeptides; Pertussis Toxin; Potassium Channels; Protein Binding; Receptors, Opioid, mu; Signal Transduction; Transfection | 2008 |
Internalization and down-regulation of mu opioid receptors by endomorphins and morphine in SH-SY5Y human neuroblastoma cells.
The human neuroblastoma cell line, SH-SY5Y, was used to examine the effects of morphine and the endogenous opioid peptides, endomorphin-1 (EM-1) and endomorphin-2 (EM-2), on mu opioid receptor (MOR) internalization and down-regulation. Treatment for 24 h with EM-1, EM-2 or morphine at 100 nM, 1 microM and 10 microM resulted in a dose-dependent down-regulation of mu receptors. Exposure of cells to 10 microM EM-1 for 2.5, 5 and 24 h resulted in a time-dependent down-regulation of mu receptors. Down-regulation of mu receptors by morphine and EM-1 was blocked by treatment with hypertonic sucrose, consistent with an endocytosis-dependent mechanism. Sensitive cell-surface binding studies with a radiolabeled mu antagonist revealed that morphine was able to induce internalization of mu receptors naturally expressed in SH-SY5Y cells. EM-1 produced a more rapid internalization of mu receptors than morphine, but hypertonic sucrose blocked the internalization induced by each of these agonists. This study demonstrates that, like morphine, the endomorphins down-regulate mu opioid receptors in a dose- and time-dependent manner. This study also demonstrates that morphine, as well as EM-1, can induce rapid, endocytosis-dependent internalization of mu opioid receptors in SH-SY5Y cells. These results may help elucidate the ability of mu agonists to regulate the number and responsiveness of their receptors. Topics: Analgesics, Opioid; Binding Sites; Cell Differentiation; Cell Line, Tumor; Cell Membrane; Dose-Response Relationship, Drug; Down-Regulation; Drug Interactions; Endocytosis; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Humans; Hypotonic Solutions; Morphine; Narcotic Antagonists; Neuroblastoma; Oligopeptides; Peptides; Radioligand Assay; Receptors, Opioid, mu; Sucrose; Time Factors; Tritium | 2004 |
Morphine and endomorphins differentially regulate micro-opioid receptor mRNA in SHSY-5Y human neuroblastoma cells.
A sensitive quantitative-competitive reverse transcriptase-polymerase chain reaction method was developed to measure micro-opioid receptor (MOR) mRNA expression in SHSY-5Y neuroblastoma cells. Differentiation of SHSY-5Y cells with either retinoic acid (RA) or 12-o-tetradecanoyl-phorbol-13-acetate (TPA) significantly increased MOR mRNA levels. Morphine treatment (10 microM) for 24 h decreased MOR mRNA levels in control, as well as RA- and TPA-differentiated cells. In contrast, chronic exposure to the opioid peptides endomorphin-1 or endomorphin-2 significantly increased MOR mRNA levels in undifferentiated and RA-differentiated cells. An opioid antagonist, naloxone, reversed the morphine and endomorphin-1 and -2 effects on MOR mRNA levels in undifferentiated SHSY-5Y cells, but naloxone had differential reversing effects on the agonists' regulation of MOR mRNA in RA- or TPA-differentiated cells. To investigate whether the changes in MOR mRNA expression paralleled changes in MOR receptor function, intracellular cAMP accumulation in SHSY-5Y cells was measured. After chronic treatment with morphine, forskolin-induced cAMP levels in SHSY-5Y cells were significantly higher than those of untreated control cells. In contrast, forskolin-induced cAMP accumulation levels were lower in cells treated with endomorphin-1 or -2 than in untreated control cells. Together, our studies indicate that the opioid alkaloid morphine and the opioid peptides endomorphin-1 and -2 differentially regulate MOR mRNA expression and MOR function in SHSY-5Y cells. Topics: Analgesics, Opioid; Colforsin; Cyclic AMP; Drug Interactions; Humans; Morphine; Naloxone; Narcotic Antagonists; Neuroblastoma; Oligopeptides; Receptors, Opioid, mu; RNA, Messenger; Tumor Cells, Cultured | 2003 |
Differential effects of endomorphin-1, endomorphin-2, and Tyr-W-MIF-1 on activation of G-proteins in SH-SY5Y human neuroblastoma membranes.
Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2), peptides recently isolated from bovine and human brain, have high affinity and selectivity for mu opiate receptors. They share sequence similarity with the endogenous opiate-modulating peptide Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH2). The efficacies of these endogenous peptides and of the enkephalin analog DAMGO were compared by measuring their effects on the binding of guanosine-5'-O-(-gamma-[35S]thio)triphosphate ([35S]GTPgammaS) to G-proteins in membranes from SH-SYSY human neuroblastoma cells. DAMGO, endomorphin-1, and endomorphin-2 stimulated [35S]GTPgammaS binding dose dependently, with maximal effects of 60 +/- 9%, 47 +/- 9%, and 43 +/- 6% stimulation above basal and ED50 of 49 +/- 8 nM, 38 +/- 8 nM, and 64 +/- 13 nM, respectively. Tyr-W-MIF-1 showed only a small stimulation of binding (5% stimulation above basal, ED50 = 2 microM). When given in combination with the other opioids, however, Tyr-W-MIF-1 attenuated their ability to activate G-proteins. Thus, the endogenous opioids endomorphin-1 and endomorphin-2 activate G-proteins similarly to the synthetic agonist DAMGO, but the structurally similar peptide Tyr-W-MIF-1 produces only minimal stimulation of G-proteins. Topics: Cell Membrane; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Humans; MSH Release-Inhibiting Hormone; Narcotic Antagonists; Neuroblastoma; Oligopeptides; Receptors, Opioid; Tumor Cells, Cultured | 1998 |
Ca2+ channel inhibition by endomorphins via the cloned mu-opioid receptor expressed in NG108-15 cells.
Endomorphin-1 and -2, recently isolated endogenous peptides specific for the mu-opioid receptor, inhibited Ca2+ channel currents with EC50 of 6 and 9 nM, respectively, in NG108-15 cells transformed to express the cloned rat mu-opioid receptor. On the other hand, they elicited no response in nontransfected NG108-15 cells. It is concluded that endomorphin-1 and -2 induce Ca2+ channel inhibition by selectively activating the mu-opioid receptor. Topics: Analgesics, Opioid; Animals; Brain Neoplasms; Calcium Channel Blockers; Glioma; Neuroblastoma; Oligopeptides; Rats; Receptors, Opioid, mu; Recombinant Proteins; Tumor Cells, Cultured | 1997 |