endomorphin-1 has been researched along with Memory-Disorders* in 2 studies
2 other study(ies) available for endomorphin-1 and Memory-Disorders
Article | Year |
---|---|
Endomorphin-1 attenuates Aβ42 induced impairment of novel object and object location recognition tasks in mice.
A growing body of evidence suggests that the agglomeration of amyloid-β (Aβ) may be a trigger for Alzheimer׳s disease (AD). Central infusion of Aβ42 can lead to memory impairment in mice. Inhibiting the aggregation of Aβ has been considered a therapeutic strategy for AD. Endomorphin-1 (EM-1), an endogenous agonist of μ-opioid receptors, has been shown to inhibit the aggregation of Aβ in vitro. In the present study, we investigated whether EM-1 could alleviate the memory-impairing effects of Aβ42 in mice using novel object recognition (NOR) and object location recognition (OLR) tasks. We showed that co-administration of EM-1 was able to ameliorate Aβ42-induced amnesia in the lateral ventricle and the hippocampus, and these effects could not be inhibited by naloxone, an antagonist of μ-opioid receptors. Infusion of EM-1 or naloxone separately into the lateral ventricle had no influence on memory in the tasks. These results suggested that EM-1 might be effective as a drug for AD preventative treatment by inhibiting Aβ aggregation directly as a molecular modifier. Topics: Amyloid beta-Peptides; Analgesics, Opioid; Animals; Infusions, Intraventricular; Male; Memory Disorders; Mice; Naloxone; Narcotic Antagonists; Oligopeptides; Peptide Fragments; Psychomotor Performance; Receptors, Opioid, mu; Recognition, Psychology | 2015 |
Endomorphin-1 improves scopolamine-induced impairment of short-term memory via mu1-opioid receptor in mice.
The effects of intracerebroventricular injection of endomorphin-1 and 2, endogenous mu-opioid receptor agonists, on the scopolamine-induced impairment of spontaneous alternation performance associated with short-term memory were investigated in mice. Endomorphin-1 (0.03 microg) inhibited scopolamine (1 mg/kg)-induced impairment of spontaneous alternation performance without affecting total arm entries, while endomorphin-2 (0.01-10 microg) failed to significantly influence the scopolamine (1 mg/kg)-induced impairment. Endomorphin-1 (0.03 microg) itself had no marked effects on spontaneous alternation performance in intact mice. Although beta-funaltrexamine (5 microg), a mu-opioid receptor antagonist, did not significantly affect the inhibitory effects of endomorphin-1 (0.03 microg) on the scopolamine (1 mg/kg)-induced impairment, naloxonazine (35 mg/kg), a mu1-opioid receptor antagonist, significantly reversed the inhibitory effects of endomorphin-1 (0.03 microg) on the impairment. Naloxonazine (35 mg/kg) unlike beta-funaltrexamine (5 microg) did not significantly influence the scopolamine (1 mg/kg)-induced impairment of spontaneous alternation performance. These results suggest that endomorphin-1 improves the disturbance of short-term memory resulting from cholinergic dysfunction through the mediation of mu1-opioid receptors. Topics: Analgesics, Opioid; Animals; Brain; Dose-Response Relationship, Drug; Drug Interactions; Male; Maze Learning; Memory Disorders; Memory, Short-Term; Mice; Muscarinic Antagonists; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Oligopeptides; Receptors, Opioid, mu; Scopolamine | 2001 |