endomorphin-1 has been researched along with Edema* in 3 studies
3 other study(ies) available for endomorphin-1 and Edema
Article | Year |
---|---|
Peripheral antinociceptive effect of 2-arachidonoyl-glycerol and its interaction with endomorphin-1 in arthritic rat ankle joints.
1. Both cannabinoid and opioid receptors are localized at the peripheral level, and drugs acting on these receptors may produce antinociception after topical administration; however, the effect of endogenous ligands at these receptors is poorly understood. Our goal was to determine the antinociceptive potency of the endogenous cannabinoid 2-arachidonoyl-glycerol (2-AG), and its interaction with endomorphin-1 (EM1) at joint level in the rat inflammation model. 2. Mechanical hypersensitivity was produced by injection of carrageenan (300 microg/30 microL) into the tibiotarsal joint of the right hind leg. The mechanical threshold was assessed by von Frey filaments. 2-AG (3-200 microg), EM1 (100-300 microg) and their combinations in a fixed-dose ratio (1 : 10) were given into the inflamed joint, and the threshold was determined repeatedly for 105 min after the drug administrations. 3. Both ligands produced dose-dependent anti-hyperalgesia, and the highest doses caused prolonged effects, but they did not influence the degree of oedema and the withdrawal threshold at the non-inflamed side. EM1 had lower potency compared to 2-AG (ED(25): 233 (CI: 198-268) microg and 126 (CI: 88-162) microg, respectively; P < 0.05). The effects of EM1 and 2-AG were prevented by mu-opioid and cannabinoid 1 receptor antagonists, respectively. The ED(25) value for the combination (98 (CI: 80-112) microg) did not differ significantly from the value of 2-AG; however, the largest dose combination produced a significantly higher effect than the ligands by themselves. 4. Our data showed that 2-AG was an effective antinociceptive ligand at joint level, and its combination with EM1 produced long-lasting, effective antinociception. Topics: Analgesics, Opioid; Animals; Arachidonic Acids; Arthritis, Experimental; Cannabinoid Receptor Modulators; Dose-Response Relationship, Drug; Drug Synergism; Edema; Endocannabinoids; Glycerides; Ligands; Male; Narcotic Antagonists; Oligopeptides; Pain Threshold; Rats; Rats, Wistar; Receptors, Cannabinoid; Receptors, Opioid; Tarsal Joints | 2010 |
The peripheral antinociceptive effects of endomorphin-1 and kynurenic acid in the rat inflamed joint model.
Several data suggest that both opioid and N-methyl-d-aspartate (NMDA) receptors are localized at the peripheral level, and drugs acting on these receptors may produce antinociception after topical administration; however, the antinociceptive effect of endogenous ligands at these receptors is poorly clarified. Our goal in this study was to determine the antinociceptive potency of the endogenous opioid peptide, endomorphin-1 (EM1), and the endogenous NMDA receptor antagonist, kynurenic acid (KYNA), and their interaction at the peripheral level in the rat inflamed joint model.. Mechanical hypersensitivity was produced by injection of carrageenan (300 microg/20 microL) into the tibiotarsal joint of the right hind leg. The mechanical pain threshold was assessed by von Frey filaments (0.064-110 g). EM1 (30, 100, and 200 microg), KYNA (30, 100, 200, and 400 microg), and their combinations in a fixed-dose ratio (1:1) were injected into the inflamed joint, and the pain threshold was determined repeatedly for 75 min after the drug administrations.. Neither EM1 nor KYNA administered to the inflamed joint influenced the pain threshold at the noninflamed side. Both ligands produced dose-dependent antihyperalgesia, and the highest doses caused a prolonged effect. EM1 had higher potency (30% effective dose [ED(30)] and 50% effective dose [ED(50)] values were 112 microg [confidence interval {CI}: 80-146] and 167 microg [CI: 135-220], respectively) compared with KYNA (ED(30) and ED(50) values were 204 microg [CI: 160-251] and 330 microg [CI: 280-407], respectively). The antinociceptive effect of EM1 was prevented by subcutaneous naltrexone pretreatment. The coadministration of EM1 with KYNA caused an enhanced and/or prolonged antinociceptive effect. The ED(30) and ED(50) values of the combination were 141 microg [CI: 83-182] and 231 microg [CI: 190-293], respectively, which did not differ significantly from the theoretically additive values (ED(30) and ED(50) values were 145 microg [CI: 68-237] and 220 microg [CI: 144-230], respectively), thus the interaction between these ligands is additive. None of the treatments caused any sign of side effects.. Peripherally administered endogenous opioid agonist and NMDA receptor antagonist ligands might be beneficial in inflammatory pain. Because both drugs barely cross the blood-brain barrier, their local administration causes no central side effects. Topics: Analgesics, Opioid; Animals; Arthralgia; Arthritis, Experimental; Behavior, Animal; Carrageenan; Dose-Response Relationship, Drug; Drug Therapy, Combination; Edema; Excitatory Amino Acid Antagonists; Hyperalgesia; Injections, Intra-Articular; Injections, Subcutaneous; Kynurenic Acid; Ligands; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain Measurement; Pain Threshold; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Receptors, Opioid; Time Factors | 2009 |
Chronic arthritis down-regulates peripheral mu-opioid receptor expression with concomitant loss of endomorphin 1 antinociception.
To determine whether peripheral administration of the endogenous mu-opioid peptide endomorphin 1 could reduce knee joint pain, using animal models of acute and chronic arthritis.. Extracellular electrophysiologic recordings were made of rat knee joint primary afferent nerve activity in response to noxious hyperrotation of the joint. Neuronal activity was assessed before and following local injection of endomorphin 1. Comparisons were made between normal knees and knees with adjuvant-induced monarthritis, tested at 48 hours and 1 week posttreatment. Expression of mu-opioid receptors in the dorsal root ganglia ipsilateral to the chronically inflamed joints was determined by real-time polymerase chain reaction (PCR) and immunohistochemical analysis.. In normal knees, endomorphin 1 caused up to a 75% reduction in joint afferent nerve activity, which was blocked by the mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-amide. The inhibitory effect of endomorphin 1 was sustained in acutely inflamed knees. Conversely, in chronically inflamed joints, endomorphin 1 had no observable effect on the primary afferent nerve firing rate elicited by a noxious mechanical stimulus and, as such, was significantly different from the rate in normal joints. Immunohistochemical and real-time PCR analysis of the L3-L5 dorsal root ganglia ipsilateral to the chronic arthritis lesion revealed a reduction in mu-opioid receptor protein and gene expression compared with that in normal control animals.. Taken together, these results provide the first electrophysiologic evidence that selective activation of peripheral mu-opioid receptors reduces normal knee joint mechanosensitivity to a noxious stimulus. Furthermore, the analgesic effect of endomorphin 1 is lost during chronic inflammation due to down-regulation of mu-opioid receptor expression in afferent nerve cell bodies. These findings begin to explain the ambiguous efficacy of peripherally administered mu-opioid drugs in controlling chronic inflammatory joint pain. Topics: Analgesics, Opioid; Animals; Arthritis, Experimental; Chronic Disease; Down-Regulation; Edema; Ganglia, Spinal; Joints; Neurons, Afferent; Nociceptors; Oligopeptides; Pain; Rats; Rats, Wistar; Receptors, Opioid, mu; RNA, Messenger | 2005 |