endomorphin-1 has been researched along with Apnea* in 2 studies
2 other study(ies) available for endomorphin-1 and Apnea
Article | Year |
---|---|
Vagal apnea and hypotension evoked by systemic injection of an antinociceptive analogue of endomorphin-2.
PK20M (Dmt-D-Lys-Phe-Phe-OH) is a novel modified endomorphin-2 (EM-2) peptide producing strong dose- and time-dependent antinociceptive activity. Yet its prototype, endogenous EM-2, has been reported to trigger respiratory and vascular effects such as apnea and hypotension. The purpose of this study was to investigate the potency of the PK20M to evoke respiratory and cardiovascular responses in comparison to endogenous endomorphins. The engagement of the vagal pathway and μ opioid receptors in mediation of these responses was investigated. The effects of intravenous injections of PK20M, EM-1, and EM-2 were studied in anaesthetized, spontaneously breathing rats. The main dose-dependent effect of all endomorphins in the intact rats was immediate apnea, blood pressure and heart rate decrease. PK20M produced apnea in at least half of the intact animals in a much smaller dose than EM-1 and EM-2. The effects of all compounds were abrogated by pre-treatment with MNLX, a peripherally acting μ receptor antagonist. Cervical vagotomy eliminated arrest of breathing in the case of each tested compound. Hypotension was reduced by vagi section only after EM-1 and EM-2 administration. Our results demonstrated that apnea and bradycardia caused by systemic injection of all endomorphins were mediated via activation of μ vagal opioid receptors. The hypotension depended on intact vagi nerves only in the case of EM-1 and EM-2, whereas PK20M decreased blood pressure via other mechanisms outside vagal innervation. Modified opioid agonist is more potent in evoking extended hypotension; at the same time, it produces an arrest of breathing less frequently than its prototype EM-2. Topics: Analgesics; Analgesics, Opioid; Animals; Apnea; Bradycardia; Dose-Response Relationship, Drug; Hypotension; Injections, Intravenous; Male; Oligopeptides; Opioid Peptides; Rats; Rats, Wistar; Respiratory Mechanics; Vagotomy; Vagus Nerve Diseases | 2020 |
Intracerebroventricular Neuropeptide FF Diminishes the Number of Apneas and Cardiovascular Effects Produced by Opioid Receptors' Activation.
The opioid-induced analgesia is associated with a number of side effects such as addiction, tolerance and respiratory depression. The involvement of neuropeptide FF (NPFF) in modulation of pain perception, opioid-induced tolerance and dependence was well documented in contrast to respiratory depression. Therefore, the aim of the present study was to examine the potency of NPFF to block post-opioid respiratory depression, one of the main adverse effects of opioid therapy. Urethane-chloralose anaesthetized Wistar rats were injected either intravenously (iv) or intracerebroventricularly (icv) with various doses of NPFF prior to iv endomorphin-1 (EM-1) administration. Iv NPFF diminished the number of EM-1-induced apneas without affecting their length and without influence on the EM-1 induced blood pressure decline. Icv pretreatment with NPFF abolished the occurrence of post-EM-1 apneas and reduced also the maximal drop in blood pressure and heart rate. These effects were completely blocked by the NPFF receptor antagonist RF9, which was given as a mixture with NPFF before systemic EM-1 administration. In conclusion, our results showed that centrally administered neuropeptide FF is effective in preventing apnea evoked by stimulation of μ-opioid receptors and the effect was due to activation of central NPFF receptors. Our finding indicates a potential target for reversal of opioid-induced respiratory depression. Topics: Analgesia; Analgesics, Opioid; Animals; Apnea; Cardiovascular Diseases; Disease Models, Animal; Humans; Infusions, Intraventricular; Oligopeptides; Pain Perception; Rats; Receptors, Neuropeptide; Receptors, Opioid, mu; Transcriptional Activation | 2020 |