enalaprilat-anhydrous has been researched along with Shock--Septic* in 3 studies
1 review(s) available for enalaprilat-anhydrous and Shock--Septic
Article | Year |
---|---|
Fighting fire with fire.
Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Antihypertensive Agents; Enalaprilat; Endothelium, Vascular; Heart Failure; Humans; Renin; Shock, Septic | 1998 |
2 other study(ies) available for enalaprilat-anhydrous and Shock--Septic
Article | Year |
---|---|
Sublingual microcirculatory effects of enalaprilat in an ovine model of septic shock.
Severe sepsis is frequently associated with microcirculatory abnormalities despite seemingly adequate hemodynamic resuscitation. As increased serum angiotensin II levels may play a role in this dysfunction, we evaluated the microcirculatory effects of enalaprilat in an experimental model of septic shock. One hour after injection of 1.5 g/kg body weight of feces into the abdominal cavity, 16 adult female anesthetized, mechanically ventilated sheep were randomized to receive 2.5 mg enalaprilat or saline. When fluid-resistant hypotension (mean arterial pressure, <65 mmHg) developed, norepinephrine was given up to a maximal dose of 3 μg·kg(-1)·min(-1). The sublingual microcirculation was evaluated using sidestream dark-field videomicroscopy. A cutoff of 20 μm was used to differentiate small and large vessels. Experiments were pursued until the sheep's spontaneous death or for a maximum of 30 h. There were progressive and significant reductions in the proportion of small perfused vessels and in the microvascular flow index for small vessels (both P < 0.01 for trend) during shock and the first 2 h of norepinephrine infusion in the placebo group, which were prevented by the administration of enalaprilat. There were no differences between treated and placebo groups in global hemodynamic variables, time to shock or median survival time (21.8 [18.6-28.8] vs. 22.9 [21.8-30.0] h; P = 0.45). However, oxygen exchange was worse (PaO2/FiO2 ratio, 224 [128-297] vs. 332 [187-450]; P < 0.05), and creatinine concentrations increased more in the treated group (from 0.51 [0.42-0.75] to 1.19 [0.64-1.50] mg·dL(-1); P = 0.04) than in the control group (from 0.55 [0.45-0.62] to 0.78 [0.46-1.78] mg·dL(-1); P = 0.12), Enalaprilat therefore prevented the worsening of sublingual microcirculatory variables in this fluid-resuscitated, hyperdynamic model of septic shock, without significant effect on arterial pressure, but with a possible deleterious effect on renal and lung function. Topics: Angiotensin II; Animals; Enalaprilat; Female; Fluid Therapy; Microcirculation; Mouth Floor; Placebos; Random Allocation; Sheep, Domestic; Shock, Septic | 2011 |
Systemic and regional hemodynamic effects of enalaprilat infusion in experimental normotensive sepsis.
Angiotensin-converting enzyme inhibitors have been shown to improve splanchnic perfusion in distinct shock states. We hypothesized that enalaprilat potentiates the benefits of early fluid resuscitation in severe experimental sepsis, particularly in the splanchnic region. Anesthetized and mechanically ventilated mongrel dogs received an intravenous infusion of live Escherichia coli over a period of 30 min. Thereafter, two interventions were performed: fluid infusion (normal saline, 32 mL/kg over 30 min) and enalaprilat infusion (0.02 mg kg(-1) min(-1) for 60 min) in randomized groups. The following groups were studied: controls (fluid infusion, N = 4), E1 (enalaprilat infusion followed by fluid infusion, N = 5) and E2 (fluid infusion followed by enalaprilat infusion, N = 5). All animals were observed for a 120 min after bacterial infusion. Mean arterial pressure, cardiac output (CO), portal vein blood flow (PVBF), systemic and regional oxygen-derived variables, and lactate levels were measured. Rapid and progressive reductions in CO and PVBF were induced by the infusion of live bacteria, while minor changes were observed in mean arterial pressure. Systemic and regional territories showed a significant increase in oxygen extraction and lactate levels. Widening venous-arterial and portal-arterial pCO2 gradients were also detected. Fluid replacement promoted transient benefits in CO and PVBF. Enalaprilat after fluid resuscitation did not affect systemic or regional hemodynamic variables. We conclude that in this model of normotensive sepsis inhibition of angiotensin-converting enzyme did not interfere with the course of systemic or regional hemodynamic and oxygen-derived variables. Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Cardiac Output; Disease Models, Animal; Dogs; Enalaprilat; Escherichia coli Infections; Fluid Therapy; Infusions, Intravenous; Lactic Acid; Male; Portal Vein; Regional Blood Flow; Resuscitation; Severity of Illness Index; Shock, Septic | 2006 |