enalapril and Muscular-Atrophy

enalapril has been researched along with Muscular-Atrophy* in 1 studies

Other Studies

1 other study(ies) available for enalapril and Muscular-Atrophy

ArticleYear
Changes in skeletal muscle SR Ca2+ pump in congestive heart failure due to myocardial infarction are prevented by angiotensin II blockade.
    Canadian journal of physiology and pharmacology, 2004, Volume: 82, Issue:7

    In order to understand the mechanisms of exercise intolerance and muscle fatigue, which are commonly observed in congestive heart failure, we studied sarcoplasmic reticulum (SR) Ca(2+)-transport in the hind-leg skeletal muscle of rats subjected to myocardial infarction (MI). Sham-operated animals were used for comparison. On one hand, the maximal velocities (Vmax) for both SR Ca(2+)-uptake and Ca(2+)-stimulated ATPase activities in skeletal muscle of rats at 8 weeks of MI were higher than those of controls. On the other hand, the Vmax values for both SR Ca(2+)-uptake and Ca(2+)-stimulated ATPase activities were decreased significantly at 16 weeks of MI when compared with controls. These alterations in Ca(2+)-transport activities were not associated with any change in the affinity (1/Ka) of the SR Ca(2+)-pump for Ca2+. Furthermore, the stimulation of SR Ca(2+)-stimulated ATPase activity by cyclic AMP-dependent protein kinase was not altered at 8 or 16 weeks of MI when compared with the respective control values. Treatment of 3-week infarcted animals with angiotensin-converting enzyme (ACE) inhibitors such as captopril, imidapril, and enalapril or an angiotensin receptor (AT1R) antagonist, losartan, for a period of 13 weeks not only attenuated changes in left ventricular function but also prevented defects in SR Ca(2+)-pump in skeletal muscle. These results indicate that the skeletal muscle SR Ca(2+)-transport is altered in a biphasic manner in heart failure due to MI. It is suggested that the initial increase in SR Ca(2+)-pump activity in skeletal muscle may be compensatory whereas the depression at late stages of MI may play a role in exercise intolerance and muscle fatigue in congestive heart failure. Furthermore, the improvements in the skeletal muscle SR Ca(2+)-transport by ACE inhibitors may be due to the decreased activity of renin-angiotensin system in congestive heart failure.

    Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Apoptosis; Calcium; Calcium-Transporting ATPases; Captopril; Cyclic AMP-Dependent Protein Kinases; Enalapril; Heart Failure; Imidazolidines; Losartan; Male; Muscle, Skeletal; Muscular Atrophy; Myocardial Infarction; Rats; Rats, Sprague-Dawley; Sarcoplasmic Reticulum; Time Factors

2004