enalapril and Brain-Edema

enalapril has been researched along with Brain-Edema* in 4 studies

Other Studies

4 other study(ies) available for enalapril and Brain-Edema

ArticleYear
Enalapril attenuates ischaemic brain oedema and protects the blood-brain barrier in rats via an anti-oxidant action.
    Clinical and experimental pharmacology & physiology, 2014, Volume: 41, Issue:3

    1. In the present study, we investigated the effects of postischaemic angiotensin-converting enzyme (ACE) inhibition with enalapril on vasogenic oedema formation and blood-brain barrier (BBB) integrity following transient focal cerebral ischaemia in rats. 2. Cerebral ischaemia was induced by 60 min occlusion of the right middle cerebral artery, followed by 24 h reperfusion. Vehicle and a non-hypotensive dose of enalapril (0.03 mg/kg) were administered at the beginning of the reperfusion period. A neurological deficit score (NDS) was determined for all rats at the end of the reperfusion period. Then, brain oedema formation was investigated using the wet-dry weight method and BBB permeability was evaluated on the basis of extravasation of Evans blue (EB) dye. In addition, oxidative stress was assessed by measuring reduced glutathione (GSH) and malondialdehyde (MDA) in brain homogenates. 3. Inhibition of ACE by enalapril significantly reduced NDS and decreased brain oedema formation (P < 0.05 for both). Disruption of the BBB following ischaemia resulted in considerable leakage of EB dye into the brain parenchyma of the ipsilateral hemispheres of vehicle-treated rats. Enalapril significantly (P < 0.05) decreased EB extravasation into the lesioned hemisphere. Enalapril also augmented anti-oxidant activity in ischaemic brain tissue by increasing GSH concentrations and significantly (P < 0.05) attenuating the increased MDA levels in response to ischaemia. 4. In conclusion, inhibition of ACE with a non-hypotensive dose of enalapril may protect BBB function and attenuate oedema formation via anti-oxidant actions.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Antioxidants; Blood-Brain Barrier; Brain Edema; Brain Ischemia; Cerebral Arteries; Enalapril; Glutathione; Male; Malondialdehyde; Oxidative Stress; Permeability; Rats; Rats, Sprague-Dawley; Reperfusion Injury

2014
Attenuation of focal cerebral ischemic injury following post-ischemic inhibition of angiotensin converting enzyme (ACE) activity in normotensive rat.
    Iranian biomedical journal, 2012, Volume: 16, Issue:4

    Central renin angiotensin system has an important role on the cerebral microcirculation and metabolism. Our previous work showed that inhibition of angiotensin converting enzyme (ACE) activity prior to induction of ischemia protected the brain from severe ischemia/reperfusion (I/R) injuries. This study evaluated the impacts of post-ischemic inhibition of ACE, enalapril, on brain infarction in normotensive rats.. Rats were anesthetized with chloral hydrate (400 mg/kg). Focal cerebral ischemia was induced by 60-min intraluminal occlusion of right middle cerebral artery (MCA). Intraperitoneal injection of enalapril (0.03 or 0.1 mg/kg) was done after MCA reopening (reperfusion). Neurological deficit score (NDS) was evaluated after 24 h and the animals randomly assigned for the assessments of infarction, absolute brain water content (ABWC) and index of brain edema.. Severe impaired motor functions (NDS = 2.78 ± 0.28), massive infarction (cortex = 214 ± 19 mm3, striatum = 86 ± 5 mm3) and edema (ABWC = 83.1 ± 0.46%) were observed in non-treated ischemic rats. Non-hypotensive dose of enalapril (0.03 mg/kg) significantly reduced NDS (1.5 ± 0.22), infarction (cortex = 102 ± 16 mm3, striatum = 38 ± 5 mm3) and edema (ABWC = 80.9 ± 0.81%). Enalapril at dose of 0.1 mg/kg significantly lowered arterial pressure could not improve NDS (2.0 ± 0.45) and reduce infarction (cortex = 166 ± 26 mm3, striatum = 71 ± 11 mm3).. Post-ischemic ACE inhibition in the normotensive rats without affecting arterial pressure protects the brain from reperfusion injuries; however, this beneficial action is masked by hypotension.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Brain Edema; Brain Ischemia; Cerebrovascular Circulation; Enalapril; Free Radicals; Male; Rats; Rats, Sprague-Dawley; Reperfusion Injury

2012
Losartan versus enalapril on cerebral edema and proteinuria in stroke-prone hypertensive rats.
    American journal of hypertension, 2001, Volume: 14, Issue:1

    Stroke-prone spontaneously hypertensive rats (SHRSP), subjected to high NaCl, show severe hypertension, organ damage, and early death. Preventive treatment with angiotensin II type 1 (AT1) receptor antagonists is known to be effective. Previously, we found that angiotensin converting enzyme (ACE) inhibition could reduce cerebral edema when treatment was started after manifestation of either proteinuria or cerebral edema. In this study AT1 receptor blockade was started at the same time points to evaluate whether this had an effect superior to ACE inhibition. SHRSP drank 1% NaCl. Group 1 served as controls. Group 2 and 3 rats were started on losartan and enalapril after proteinuria exceeded 40 mg/day. Group 4 and 5 rats were started on losartan and enalapril after the first observation of cerebral edema with T2-weighted magnetic resonance imaging scans. In controls, median survival was 54 days (range, 35 to 80 days) after the start of salt loading. With early-onset losartan and enalapril, survival increased to 305 days (range, 184 to 422 days) and 320 days (range, 134 to 368 days) (both P < .01 v group 1). Cerebral edema formation was prevented in all but two rats, one from each treatment modality. Development of proteinuria was markedly reduced. With late-onset treatment with losartan and enalapril, survival was 290 days (range, 120 to 367 days) and 264 days (range, 154 to 319 days) (both P < .01). Both losartan and enalapril decreased cerebral edema to baseline levels. Ultimately cerebral edema reoccurred, despite continued treatment, in 75% of the rats. Systolic blood pressure did not decrease after losartan treatment, but, similarly to early-onset treatment, decreased transiently after enalapril treatment. Cerebral edema and proteinuria were prevented and reduced in SHRSP treated with either an AT1 receptor antagonist or an ACE inhibitor. Survival was markedly and similarly prolonged by both treatments, whether initiated directly before or after development of cerebral edema. In rats where treatment was initiated after manifestation of cerebral edema, both cerebral edema and proteinuria reappeared despite continued treatment. Apparently, when hypertension is sustained, reappearance of target organ damage may not be entirely dependent on angiotensin.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Brain Edema; Drug Administration Schedule; Enalapril; Genetic Predisposition to Disease; Hypertension; Losartan; Male; Proteinuria; Rats; Rats, Inbred SHR; Stroke; Survival Analysis

2001
Enalapril prevents imminent and reduces manifest cerebral edema in stroke-prone hypertensive rats.
    Stroke, 1998, Volume: 29, Issue:8

    Stroke-prone spontaneously hypertensive rats (SHRSP), subjected to high NaCl intake, show severe hypertension, organ damage, and early death. Preventive treatment with an angiotensin-converting enzyme (ACE) inhibitor is known to reduce mortality. Previously we found that proteinuria always precedes cerebral edema in SHRSP. Hence, in this study ACE inhibition was started later, ie, directly after manifestation of either proteinuria or cerebral edema.. SHRSP were subjected to 1% NaCl intake. Group 1 served as a control. In group 2 early-onset treatment with the ACE inhibitor enalapril was initiated after proteinuria was >40 mg/d. In group 3 late-onset ACE inhibition was started after the first observation of cerebral edema with T2-weighted MRI. Cerebral edema was expressed as the percentage of pixels with an intensity above a defined threshold.. In controls median survival was 54 days (range, 32 to 80 days) after start of salt loading. The terminal level of cerebral edema was 19.0+/-3.0%. Under early-onset enalapril, median survival increased to 320 days (range, 134 to 368 days; P<0.01 versus group 1). Cerebral edema was prevented in all but 1 rat. Systolic blood pressure was slightly and transiently reduced at day 14. Proteinuria was markedly reduced (52+/-7 versus 190+/-46 mg/d in group 1 at day 7; P<0.05). Under late-onset enalapril, median survival was 264 days (range, 154 to 319 days; P<0.01 versus group 1). Cerebral edema decreased to baseline levels (9.6+/-2.9 at day 0 to 3.4+/-0.5% at day 3; (P<0.05). Ultimately cerebral edema reoccurred in 6 of the 8 rats. SBP decreased slightly at day 7 only. Proteinuria decreased from 283+/-27 at day 0 to 116+/-22 mg/d at day 7 (P<0.05). Complete remission of the original locus of cerebral edema was confirmed histologically.. In SHRSP with proteinuria, treatment with an ACE inhibitor both prevented the development of cerebral edema and reduced manifest cerebral edema and proteinuria. Survival was markedly prolonged. These findings support the use of ACE inhibition for treatment in hypertensive encephalopathy.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Body Weight; Brain Edema; Cerebrovascular Disorders; Drinking; Eating; Enalapril; Magnetic Resonance Imaging; Male; Proteinuria; Rats; Rats, Inbred SHR; Sodium, Dietary; Survival Analysis

1998