ellagitannin has been researched along with Overweight* in 3 studies
1 trial(s) available for ellagitannin and Overweight
Article | Year |
---|---|
Deciphering the Human Gut Microbiome of Urolithin Metabotypes: Association with Enterotypes and Potential Cardiometabolic Health Implications.
The gut microbiota ellagitannin-metabolizing phenotypes (i.e., urolithin metabotypes [UMs]) are proposed as potential cardiovascular disease (CVD) risk biomarkers because the host blood lipid profile is reported to be associated with specific UMs. However, the link for this association remains unknown so far.. The gut microbiome of 249 healthy individuals is analyzed using 16S rDNA sequencing analysis. Individuals are also stratified by UMs (UM-A, UM-B, and UM-0) and enterotypes (Bacteroides, Prevotella, and Ruminococcus). Associations of UMs discriminating bacteria with CVD risk markers are investigated. Distribution and gut microbiota composition of UMs and enterotypes are not coincident. Almost half of the discriminating genera between UM-A and UM-B belongs to the Coriobacteriaceae family. UM-B individuals present higher blood cholesterol levels and higher alpha-diversity, including Coriobacteriaceae family, than those of UM-A. Coriobacteriaceae, whose abundance is the highest in UM-B, is positively correlated with total cholesterol, LDL cholesterol, and body mass index.. Results herein suggest that the family Coriobacteriaceae could be a link between individuals' UMs and their blood cholesterol levels. Further research is needed to explore the mechanisms of the host metabolic phenotype, including cholesterol excretion products, to modulate this bacterial family. Topics: Adult; Aged; Cardiovascular Diseases; Cholesterol; Coumarins; Feces; Female; Gastrointestinal Microbiome; Humans; Hydrolyzable Tannins; Juglans; Lythraceae; Male; Microbiota; Middle Aged; Overweight | 2019 |
2 other study(ies) available for ellagitannin and Overweight
Article | Year |
---|---|
The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normoweight, overweight-obesity and metabolic syndrome.
Urolithins are microbial metabolites produced after consumption of ellagitannin-containing foods such as pomegranates and walnuts. Parallel to isoflavone-metabolizing phenotypes, ellagitannin-metabolizing phenotypes (urolithin metabotypes A, B and 0; UM-A, UM-B and UM-0, respectively) can vary among individuals depending on their body mass index (BMI), but correlations between urolithin metabotypes (UMs) and cardiometabolic risk (CMR) factors are unexplored. We investigated the association between UMs and CMR factors in individuals with different BMI and health status.. UM was identified using UPLC-ESI-qToF-MS in individuals consuming pomegranate or nuts. The associations between basal CMR factors and the urine urolithin metabolomic signature were explored in 20 healthy normoweight individuals consuming walnuts (30 g/d), 49 healthy overweight-obese individuals ingesting pomegranate extract (450 mg/d) and 25 metabolic syndrome (MetS) patients consuming nuts (15 g-walnuts, 7.5 g-hazelnuts and 7.5 g-almonds/d).. Correlations between CMR factors and urolithins were found in overweight-obese individuals. Urolithin-A (mostly present in UM-A) was positively correlated with apolipoprotein A-I (P ≤ 0.05) and intermediate-HDL-cholesterol (P ≤ 0.05) while urolithin-B and isourolithin-A (characteristic from UM-B) were positively correlated with total-cholesterol, LDL-cholesterol (P ≤ 0.001), apolipoprotein B (P ≤ 0.01), VLDL-cholesterol, IDL-cholesterol, oxidized-LDL and apolipoprotein B:apolipoprotein A-I ratio (P ≤ 0.05). In MetS patients, urolithin-A only correlated inversely with glucose (P ≤ 0.05). Statin-treated MetS patients with UM-A showed a lipid profile similar to that of healthy normoweight individuals while a poor response to lipid-lowering therapy was observed in MB patients.. UMs are potential CMR biomarkers. Overweight-obese individuals with UM-B are at increased risk of cardiometabolic disease, whereas urolithin-A production could protect against CMR factors. Further research is warranted to explore these associations in larger cohorts and whether the effect of lipid-lowering drugs or ellagitannin-consumption on CMR biomarkers depends on individuals' UM.. NCT01916239 (https://clinicaltrials.gov/ct2/show/NCT01916239) and ISRCTN36468613 (http://www.isrctn.com/ISRCTN36468613). Topics: Adult; Biomarkers; Body Mass Index; Body Weight; Cardiovascular Diseases; Coumarins; Female; Fruit; Gastrointestinal Microbiome; Humans; Hydrolyzable Tannins; Juglans; Lipids; Lythraceae; Male; Metabolic Syndrome; Middle Aged; Nuts; Obesity; Overweight; Plant Extracts; Risk Factors | 2018 |
Comment on safety and antioxidant activity of a pomegranate ellagitannin-enriched polyphenol dietary supplement in overweight individuals with increased waist size.
Topics: Animals; Antioxidants; Cytochrome P-450 Enzyme System; Dietary Supplements; Flavonoids; Gene Expression; Humans; Hydrolyzable Tannins; Liver; Lythraceae; Mice; Overweight; Phenols; Plant Extracts; Polyphenols; Waist Circumference | 2008 |