ellagitannin has been researched along with Body-Weight* in 2 studies
2 other study(ies) available for ellagitannin and Body-Weight
Article | Year |
---|---|
Protective Effects of a Strawberry Ellagitannin-Rich Extract against Pro-Oxidative and Pro-Inflammatory Dysfunctions Induced by a High-Fat Diet in a Rat Model.
Due to the demonstrated intestinal microbial transformation of strawberry ellagitannins (ET) into bioactive metabolites, in the current study on rats, we hypothesised that the dietary addition of a strawberry ET-rich extract (S-ET) to a high-fat diet (HFD) would attenuate disturbances in the redox and lipid status as well as in the inflammatory response. We randomly distributed 48 Wistar rats into six groups and used two-way analysis of variance (ANOVA) to assess the effects of two main factors-diet type (standard and high-fat) and ET dosage (without, low, and 3× higher)-applied to rats for 4 weeks. In relation to the hypothesis, irrespective of the dosage, the dietary application of ET resulted in the desired attenuating effects in rats fed a HFD as manifested by decreased body weight gain, relative mass of the epididymal pad, hepatic fat, oxidized glutathione (GSSG), triglycerides (TG), total cholesterol (TC), and thiobarbituric acid-reactive substances (TBARS) concentrations as well as desired modifications in the blood plasma parameters. These beneficial changes were enhanced by the high dietary addition of ET, which was associated with considerably higher concentrations of ET metabolites in the urine and plasma of rats. The results indicated that S-ET could be effectively used for the prevention and treatment of metabolic disturbances associated with obesity, dyslipidaemia, redox status imbalance, and inflammation. Topics: Animals; Antioxidants; Body Composition; Body Weight; Cholesterol; Coumarins; Diet, High-Fat; Fragaria; Fruit; Glutathione; Hydrolyzable Tannins; Inflammation; Liver; Male; Oxidation-Reduction; Oxidative Stress; Plant Extracts; Polyphenols; PPAR alpha; Rats; Rats, Wistar; Thiobarbituric Acid Reactive Substances; Triglycerides | 2020 |
The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normoweight, overweight-obesity and metabolic syndrome.
Urolithins are microbial metabolites produced after consumption of ellagitannin-containing foods such as pomegranates and walnuts. Parallel to isoflavone-metabolizing phenotypes, ellagitannin-metabolizing phenotypes (urolithin metabotypes A, B and 0; UM-A, UM-B and UM-0, respectively) can vary among individuals depending on their body mass index (BMI), but correlations between urolithin metabotypes (UMs) and cardiometabolic risk (CMR) factors are unexplored. We investigated the association between UMs and CMR factors in individuals with different BMI and health status.. UM was identified using UPLC-ESI-qToF-MS in individuals consuming pomegranate or nuts. The associations between basal CMR factors and the urine urolithin metabolomic signature were explored in 20 healthy normoweight individuals consuming walnuts (30 g/d), 49 healthy overweight-obese individuals ingesting pomegranate extract (450 mg/d) and 25 metabolic syndrome (MetS) patients consuming nuts (15 g-walnuts, 7.5 g-hazelnuts and 7.5 g-almonds/d).. Correlations between CMR factors and urolithins were found in overweight-obese individuals. Urolithin-A (mostly present in UM-A) was positively correlated with apolipoprotein A-I (P ≤ 0.05) and intermediate-HDL-cholesterol (P ≤ 0.05) while urolithin-B and isourolithin-A (characteristic from UM-B) were positively correlated with total-cholesterol, LDL-cholesterol (P ≤ 0.001), apolipoprotein B (P ≤ 0.01), VLDL-cholesterol, IDL-cholesterol, oxidized-LDL and apolipoprotein B:apolipoprotein A-I ratio (P ≤ 0.05). In MetS patients, urolithin-A only correlated inversely with glucose (P ≤ 0.05). Statin-treated MetS patients with UM-A showed a lipid profile similar to that of healthy normoweight individuals while a poor response to lipid-lowering therapy was observed in MB patients.. UMs are potential CMR biomarkers. Overweight-obese individuals with UM-B are at increased risk of cardiometabolic disease, whereas urolithin-A production could protect against CMR factors. Further research is warranted to explore these associations in larger cohorts and whether the effect of lipid-lowering drugs or ellagitannin-consumption on CMR biomarkers depends on individuals' UM.. NCT01916239 (https://clinicaltrials.gov/ct2/show/NCT01916239) and ISRCTN36468613 (http://www.isrctn.com/ISRCTN36468613). Topics: Adult; Biomarkers; Body Mass Index; Body Weight; Cardiovascular Diseases; Coumarins; Female; Fruit; Gastrointestinal Microbiome; Humans; Hydrolyzable Tannins; Juglans; Lipids; Lythraceae; Male; Metabolic Syndrome; Middle Aged; Nuts; Obesity; Overweight; Plant Extracts; Risk Factors | 2018 |