elastin has been researched along with Spinal-Stenosis* in 6 studies
6 other study(ies) available for elastin and Spinal-Stenosis
Article | Year |
---|---|
The expression of P16 and S100 associated with elastin degradation and fibrosis of the Ligamentum Flavum hypertrophy.
One of the characteristics of lumbar spinal stenosis (LSS) is elastin degradation and fibrosis in the ligamentum flavum (LF). However, the biochemical factors that cause these histologic changes is unclear. P16 and S100 participate in scar formation and collagen development in wound healing and fibrosis diseases. In this study, we investigate the association between P16 and S100 expression and the fibrosis of the hypertrophic LF in LSS.. The LF specimens were surgically obtained from 30 patients with single-segment LSS (SLSS), 30 patients with double-segment LSS (DLSS) and 30 patients with L4/5 lumbar disc herniation (LDH). The LF thickness was measured by axial T1-weighted MRI. The extent of LF elastin degradation and fibrosis were graded based on hematoxylin-eosin (HE) and Verhoff's Van Gieson's (VVG) stain, respectively. The localization of P16 and S100 was determined by immunohistochemistry.. The Absolute and relative LF thickness were greater in the DLSS group compared with the SLSS and LDH groups (p < 0.05). The elastic tissue from the dorsal aspect to the dural aspect in SLSS and DLSS groups was significantly increased. The amount of collagen deposition and elastic tissue is significantly higher in the DLSS group compared with the SLSS and LDH groups (p < 0.05). The specimens in the DLSS group showed positive staining of P16, especially in the dorsal layer. Almost all samples in the SLSS group were partially positive for P16. The LDH group showed negative staining of P16 in both the dural and dorsal layers. All the three groups were stained with S100 in the dorsal layer of the LF. On the contrary, S100 staining was absent in the dural layer of the LF in the three groups.. Elastin degradation and fibrosis of the LF in the DLSS patients is more severe compared with the SLSS and LDH patients. Increased expression of P16 associated with LF fibrosis and thickness, suggested that the expression of P16 may related to LF hypertrophy in the patients who suffer with LSS. LF hypertrophy process may not be associated with high expression of S100. Topics: Adult; Cyclin-Dependent Kinase Inhibitor p16; Elastin; Female; Fibrosis; Humans; Hypertrophy; Ligamentum Flavum; Magnetic Resonance Imaging; Male; Middle Aged; S100 Proteins; Spinal Stenosis | 2019 |
Decreased catalase expression is associated with ligamentum flavum hypertrophy due to lumbar spinal canal stenosis.
This is an immunohistologic study of gene expression between patients and controls.This study aims to evaluate expression of the catalase gene in hypertrophied ligamentum flavum (LF) specimens obtained from patients with lumbar spinal canal stenosis (LSCS).LSCS is one of the most common spinal disorders. It is well known that LF hypertrophy plays an important role in the onset of LSCS. Although degenerative changes, aging, and mechanical stress are all thought to contribute to hypertrophy and fibrosis of the LF, the precise pathogenesis of LF hypertrophy remains unknown. Previous genetic studies have tried to determine the mechanism of LF hypertrophy. However, the association between catalase gene expression and LF hypertrophy has not yet been explored.. LF specimens were surgically obtained from 30 patients with spinal stenosis (LSCS group) and from 30 controls with lumbar disc herniation (LDH group). LF thickness was measured at the thickest point using calipers to an accuracy of 0.01 mm during surgical intervention. The extent of LF elastin degradation and fibrosis were graded (grades 0-4) by hematoxylin and eosin staining and Masson trichrome staining, respectively. The resulting LF measurements, histologic data, and immunohistologic results were then compared between the 2 groups.. The average LF thickness was significantly higher in the LSCS group than in the LDH group (5.99 and 2.95 mm, respectively, P = .004). Elastin degradation and fibrosis of the LF were significantly more severe in spinal stenosis samples than in the disc herniation samples (3.04 ± 0.50 vs 0.79 ± 0.60, P = .007; 3.01 ± 0.47 vs 0.66 ± 0.42, P = .009, respectively). Significantly lower expression of catalase was observed in the perivascular area of LF samples obtained from patients with LSCS compared with controls (61.80 ± 31.10 vs 152.80 ± 41.13, respectively, P = .009).. Our findings suggest that decreased expression of catalase is associated with LF hypertrophy in patients with LSCS. Topics: Adult; Aged; Catalase; Elastin; Female; Fibrosis; Gene Expression; Humans; Hypertrophy; Intervertebral Disc Displacement; Ligamentum Flavum; Lumbar Vertebrae; Male; Middle Aged; Organ Size; Retrospective Studies; Spinal Stenosis | 2019 |
Diabetes mellitus is associated with increased elastin fiber loss in ligamentum flavum of patients with lumbar spinal canal stenosis: results of a pilot histological study.
Lumbar spinal canal stenosis (LSCS) is associated with fibrosis, decreased elastin-to-collagen ratio, and hypertrophy of the ligamentum flavum (LF). Diabetes mellitus (DM) is known to cause metabolic disturbances within the extracellular matrix in multiple tissues. These alterations may play a major role in the severity of clinical symptoms of LSCS affecting diabetic patients. We aimed to examine the hypothesis that DM may contribute to the LF changes seen in patients with LSCS.. The study cohort included 29 patients: 23 with LSCS (10 with DM vs. 13 without DM) as well as six patients with lumbar disc herniation (LDH). Surgical LF specimens were retrieved for histological assessment. Morphologic quantification of confocal microscopy images using fast Fourier transform analysis allowed us to compare anisotropy and elastin fiber orientation between groups.. There was a significant positive correlation between fasting plasma glucose values and degree of elastin degradation (r = 0.36, p = 0.043). The diabetic patients with LSCS showed a significantly greater loss of elastic fibers (2.3 ± 0.9 vs. 1.5 ± 0.55, p = 0.009), although fibrosis was shown to be similar (1.44 ± 0.7 vs. 1.43 ± 0.88, p = 0.98). There was no significant difference in the degree of calcification in the LSCS group between patients with and without diabetes (1.71 vs. 2.05%, p = 0.653). Fiber orientation was found to be less homogenous in the LSCS compared with the LDH group, although not significantly affected by DM.. The present study points to a significant contribution of DM to the loss of elastin fibers that occurs in the LF of patients with LSCS. Topics: Diabetes Complications; Elastin; Humans; Ligamentum Flavum; Lumbar Vertebrae; Pilot Projects; Spinal Stenosis | 2018 |
Hypertrophy of ligamentum flavum in lumbar spine stenosis is associated with increased miR-155 level.
Hypertrophy of ligamentum flavum (LF) contributes to lumbar spinal stenosis (LSS) and is caused mainly by fibrosis. Recent data indicate that miR-155 plays a crucial role in the pathogenesis of different fibrotic diseases. This study aimed to test the hypothesis that miR-155 exerts effects on LF thickness by regulating collagen expression. We found that LF thickness and the expression of collagen I and, collagen III were higher in LF from LSS patients than in LF from lumbar disc herniation (LDH) patients (P < 0.01). The expression of miR-155 was significantly higher in LF from LSS group than in LF from LDH group (P < 0.01). miR-155 level was positively correlated with LF thickness (r = 0.958, P < 0.01), type I collagen level (r = 0.825, P < 0.01), and type III collagen level (r = 0.827, P < 0.01). miR-155 mimic increased mRNA and protein expression of collagen I and collagen III in fibroblasts isolated from LF, while miR-155 sponge decreased mRNA and protein expression of collagen I and III in fibroblasts. In conclusions, miR-155 is a fibrosis-associated miRNA and may play important role in the pathogenesis of LF hypertrophy. Topics: Adult; Aged; Case-Control Studies; Cells, Cultured; Collagen Type I; Collagen Type III; Elastin; Female; Fibrosis; Gene Expression; Humans; Hypertrophy; Ligamentum Flavum; Lumbar Vertebrae; Male; MicroRNAs; Middle Aged; Proteolysis; Spinal Stenosis; Up-Regulation; Young Adult | 2014 |
The increased expression of matrix metalloproteinases associated with elastin degradation and fibrosis of the ligamentum flavum in patients with lumbar spinal stenosis.
One of the characteristics of spinal stenosis is elastin degradation and fibrosis of the extracellular matrix of the ligamentum flavum. However, there have been no investigations to determine which biochemical factors cause these histologic changes. So we performed the current study to investigate the hypothesis that matrix metalloproteinases (MMPs), which possess the ability to cause extracellular matrix remodeling, may play a role as a mediator for this malady in the ligamentum flavum.. The ligamentum flavum specimens were surgically obtained from thirty patients with spinal stenosis, as well as from 30 control patients with a disc herniation. The extents of ligamentum flavum elastin degradation and fibrosis were graded (grade 0-4) with performing hematoxylin-eosin staining and Masson's trichrome staining, respectively. The localization of MMP-2 (gelatinase), MMP-3 (stromelysin) and MMP-13 (collagenase) within the ligamentum flavum tissue was determined by immunohistochemistry. The expressions of the active forms of MMP-2, MMP-3 and MMP-13 were determined by western blot analysis, and the blots were quantified using an imaging densitometer. The histologic and biochemical results were compared between the two conditions.. Elastin degradation and fibrosis of the ligamentum flavum were significantly more severe in the spinal stenosis samples than that in the disc herniation samples (3.14 +/- 0.50 vs. 0.55 +/- 0.60, p < 0.001; 3.10 +/- 0.57 vs. 0.76 +/- 0.52, p < 0.001, respectively). The expressions of the active form of MMPs were identified in all the ligamentum flavums of the spinal stenosis and disc herniation patients. The expressions of active MMP-2 and MMP-13 were significantly higher in the spinal stenosis samples than that in the disc herniation samples (both p < 0.05). The expression of active MMP-3 was slightly higher in the spinal stenosis samples than that in the disc herniation samples, but the difference was not statistically significant (p = 0.131). MMP-2, -3, and -13 were positively stained on the ligamentum flavum fibroblasts.. The current results suggest that the increased expression of active MMPs by the ligamentum flavum fibroblasts might be related to the elastin degradation and fibrosis of the ligamentum flavum in the patients who suffer with lumbar spinal stenosis. Topics: Aged; Blotting, Western; Elastin; Extracellular Matrix; Female; Fibrosis; Humans; Immunohistochemistry; Ligamentum Flavum; Lumbar Vertebrae; Male; Matrix Metalloproteinase 13; Matrix Metalloproteinase 2; Matrix Metalloproteinase 3; Matrix Metalloproteinases; Middle Aged; Spinal Stenosis | 2009 |
Pathomechanism of loss of elasticity and hypertrophy of lumbar ligamentum flavum in elderly patients with lumbar spinal canal stenosis.
A histologic, biologic, and immunohistochemical assessment using human samples of lumbar ligamentum flavum.. To clarify the pathomechanism of loss of elasticity and hypertrophy of the lumbar ligamentum flavum (LF) in the elderly population.. The most common spinal disorder in elderly patients is lumbar spinal canal stenosis, causing low back and leg pain, and paresis. Canal narrowing, in part, results from hypertrophy of the LF. Although histologic and biologic literature on this topic is available, the pathomechanism of loss of elasticity and hypertrophy of the LF is still unknown.. One fetus, 5 young, and 5 elderly LF were obtained for histologic study. Hematoxylin and eosin, Alcian blue, Masson Trichrome, and Elastica Van Gieson stains were performed for each LF. Nine LF were collected and were used for biologic study of real time RT-PCR to quantitatively measure mRNA expression of Type I collagen and elastin in each LF.. In the LF of the fetus, elastic fibers accounted for about 75% of the entire area. In the dural aspect of the LF in the young and elderly group, the ratio was also around 75%; however, the ratio of the dorsal aspect decreased with age. Almost half of the area showing loss of elastic fibers was shown to be converted to cartilaginous tissue producing Type II collagen and proteoglycan by Alcian blue and Type II collagen immunohistochemistry. The area, which did not stain black with EV nor blue with AB stain, was positively stained blue with T stain, indicating scarring. The area of the normal dural layer was 18.0 +/- 2.3 and 33.8 +/- 4.3 (mm2), for young and elderly group, respectively. Accordingly, it was 3.2 +/- 0.8 and 18.0 +/- 10.2 (mm2), for the dorsal abnormal layer. Elastin mRNA showed a relatively strong correlation (r = 0.44) with age; however, the slope was very gentle. Type I collagen mRNA showed a very strong correlation (r = 0.80) with age. The slope was steeper, and the value reached at 1000% (10-fold) around 65 years old when compared with the LF from younger patient. Elastin mRNA showed a weak correlation (r = 0.36) with thickness, and the slope was gentle. Type I collagen mRNA showed relatively strong correlation (r = 0.52) with thickness. The slope was steeper, and the line reached at 1000% (10-fold) around 6.5 (mm) when compared with a thin LF.. Decreased elasticity of LF in the elderly is due to the loss of elastic fibers and a concomitant increase of collagenous fibers in the dorsal aspect. LF hypertrophy could be due to the thickening of the normal elastic layer as well as of the abnormal collagenous layer. Topics: Adult; Age Factors; Aging; Collagen Type I; Collagen Type II; Elasticity; Elastin; Fetus; Humans; Hypertrophy; Ligamentum Flavum; Lumbar Vertebrae; Middle Aged; RNA, Messenger; Spinal Stenosis | 2007 |