elastin has been researched along with Pulmonary-Arterial-Hypertension* in 2 studies
2 other study(ies) available for elastin and Pulmonary-Arterial-Hypertension
Article | Year |
---|---|
Endothelin-1 induces lysyl oxidase expression in pulmonary artery smooth muscle cells.
The increase in thickening of the arterial wall of pulmonary arterial hypertension (PAH) includes cellular proliferation as well as matrix deposition and interrupted internal elastic lamina (IEL) consisting of a thick homogeneous sheet of elastin. Little is, although, known about the detail of IEL formation in PAH. Endothelin-1 is overexpressed in pulmonary arterioles of PAH. We aimed to examine the expression of genes contributing to IEL formation in pulmonary artery smooth muscle cells (PASMCs) especially focused on lysyl oxidase (LOx), an exreacellular matrix enzyme that catalyzes the cross-linking of collagens or elastin. We quantified mRNA expressions of genes contributing to IEL formation including LOx in PASMCs using real-time quantitative polymerase chain reaction. We stimulated human PASMCs with endothelin-1 with prostacyclin or trapidil. Endothelin-1 significantly increased LOx expression. Prostacyclin and trapidil restored endothelin-1-induced LOx expression to the basal level. Endothelin-1 increased LOx expression strongly in PASMCs from PAH patients compared to those from controls. Trapidil reduced LOx expression only in PASMCs from PAH patients. Overexpressed endothelin-1 in PAH patients can increase expression of LOx and agitate cross-linking of elastin and collagen, resulting in ectopic deposition of these in the vascular media. Topics: Case-Control Studies; Cell Proliferation; Cells, Cultured; Collagen; Elastin; Endothelin-1; Epoprostenol; Gene Expression Profiling; Humans; Lung; Lung Transplantation; Myocytes, Smooth Muscle; Pneumonectomy; Primary Cell Culture; Protein-Lysine 6-Oxidase; Pulmonary Arterial Hypertension; Pulmonary Artery; Trapidil; Up-Regulation | 2020 |
Remodeling Matrix Synthesis in a Rat Model of Aortocaval Fistula and the Cyclic Stretch: Impaction in Pulmonary Arterial Hypertension-Congenital Heart Disease.
Pulmonary arterial hypertension-congenital heart disease (PAH-CHD) is characterized by systemic to pulmonary arterial shunts and sensitively responds to volume overload and stretch of the vascular wall leading to pulmonary vascular remodeling. We hypothesized that the responses of pulmonary artery smooth muscle cells (PASMCs) to mechanical stress-associated volume overload may promote vascular remodeling in PAH-CHD. Here, we show that significantly increased collagen was in the PA adventitial layer by trichrome staining in PAH-CHD patients and an aortocaval fistula (ACF) rat model in which chronic vascular volume overload induced-PAH. We assessed the gene expression profiles of SMC markers, extracellular matrix, and collagen in isolated SMCs from pulmonary and thoracic vessels with cyclic stretch-triggered responses by real-time PCR analysis. The data corresponded to collagen deposition, which modulated pulmonary vascular remodeling in clinical and experimental PAH-ACF cases as well as in cyclic stretch-triggered SMCs in an in vitro model. We observe that collagen I A2 (COLIA2) is expressed in the control rat, but collagen I A1 (COLIA1) and Notchs remarkably increase in the lungs of ACF rats. Interestingly, closing the left-to-right shunt that leads to a reduced blood volume in the PA system of ACF rats (ACFRs) decreased the expression of COLIA1 and increased that of collagen I A2(COLIA2). This study contributes to the stretch-induced responses of SMCs and provides important future directions for therapies aimed at preventing abnormal matrix protein synthesis in volume overload-induced pulmonary hypertension (PH). Topics: Animals; Collagen; Disease Models, Animal; Elastin; Humans; Hypertrophy, Right Ventricular; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Pulmonary Arterial Hypertension; Pulmonary Artery; Pulmonary Circulation; Rats; Receptors, Notch; Stress, Mechanical; Vascular Remodeling; Vascular Stiffness | 2020 |