elastin has been researched along with Placental-Insufficiency* in 4 studies
4 other study(ies) available for elastin and Placental-Insufficiency
Article | Year |
---|---|
Uteroplacental insufficiency programmes vascular dysfunction in non-pregnant rats: compensatory adaptations in pregnancy.
Intrauterine growth restriction is a risk factor for cardiovascular disease in adulthood. We have previously shown that intrauterine growth restriction caused by uteroplacental insufficiency programmes uterine vascular dysfunction and increased arterial stiffness in adult female rat offspring. The aim of this study was to investigate vascular adaptations in growth restricted female offspring when they in turn become pregnant. Uteroplacental insufficiency was induced in WKY rats by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) on day 18 of pregnancy. F0 pregnant females delivered naturally at term. F1 Control and Restricted offspring were mated at 4 months of age and studied on day 20 of pregnancy. Age-matched non-pregnant F1 Control and Restricted females were also studied. Wire and pressure myography were used to test endothelial and smooth muscle function, and passive mechanical wall properties, respectively, in uterine, mesenteric, renal and femoral arteries of all four groups. Collagen and elastin fibres were quantified using polarized light microscopy and qRT-PCR. F1 Restricted females were born 10–15% lighter than Controls (P <0.05). Non-pregnant Restricted females had increased uterine and renal artery stiffness compared with Controls (P <0.05), but this difference was abolished at day 20 of pregnancy. Vascular smooth muscle and endothelial function were preserved in all arteries of non-pregnant and pregnant Restricted rats. Collagen and elastin content were unaltered in uterine arteries of Restricted females. Growth restricted females develop compensatory vascular changes during late pregnancy, such that region-specific vascular deficits observed in the non-pregnant state did not persist in late pregnancy. Topics: Adaptation, Physiological; Animals; Arteries; Collagen; Elastin; Endothelium, Vascular; Female; Fetal Growth Retardation; Muscle, Smooth; Placental Insufficiency; Pregnancy; Rats; Rats, Wistar; Uterus; Vascular Diseases; Vascular Stiffness; Vasoconstriction | 2012 |
IUGR decreases elastin mRNA expression in the developing rat lung and alters elastin content and lung compliance in the mature rat lung.
Complications of intrauterine growth restriction (IUGR) include increased pulmonary morbidities and impaired alveolar development. Normal alveolar development depends upon elastin expression and processing, as well as the formation and deposition of elastic fibers. This is true of the human and rat. In this study, we hypothesized that uteroplacental insufficiency (UPI)-induced IUGR decreases mRNA levels of elastin and genes required for elastin fiber synthesis and assembly, at birth (prealveolarization) and postnatal day 7 (midalveolarization) in the rat. We further hypothesized that this would be accompanied by reduced elastic fiber deposition and increased static compliance at postnatal day 21 (mature lung). We used a well characterized rat model of IUGR to test these hypotheses. IUGR decreases mRNA transcript levels of genes essential for elastic fiber formation, including elastin, at birth and day 7. In the day 21 lung, IUGR decreases elastic fiber deposition and increases static lung compliance. We conclude that IUGR decreases mRNA transcript levels of elastic fiber synthesis genes, before and during alveolarization leading to a reduced elastic fiber density and increased static lung compliance in the mature lung. We speculate that the mechanism by which IUGR predisposes to pulmonary disease may be via decreased lung elastic fiber deposition. Topics: Animals; Animals, Newborn; Elastic Tissue; Elastin; Female; Fetal Growth Retardation; Lung; Lung Compliance; Placental Insufficiency; Pregnancy; Rats; Rats, Sprague-Dawley; RNA, Messenger | 2011 |
Central stiffening in adulthood linked to aberrant aortic remodeling under suboptimal intrauterine conditions.
This study examined perturbed aortic development and subsequent wall stiffening as a link to later cardiovascular disease. Placental insufficiency was induced in pregnant guinea pigs at midgestation by uterine artery ligation. Near term, fetuses were killed and defined as normal birth weight (NBW), low birth weight (LBW), and intrauterine growth restricted (IUGR). Offspring were classified according to birth weight and killed in adulthood. Collagen and elastin content of aortas were analyzed using Sirius red and orcein staining, respectively. Immunofluorescence was used for detection of α-actin and nonmuscle myosin heavy chain (MHC-B), a marker of synthetic-type vascular smooth muscle cells (VSMCs). Ex vivo generation of length-tension curves was performed with aortic rings from adult offspring. Relative elastic fiber content was decreased by 10% in LBW and 14% in IUGR compared with NBW fetuses. In adulthood, relative elastic fiber content was 51% lower in LBW vs. NBW, and the number of elastic laminae adjusted for wall thickness was 25% lower in LBW (P < 0.01). The percent area stained for MHC-B was sixfold higher in LBW vs. NBW fetuses (P < 0.0001) and threefold higher in LBW vs. NBW adult offspring (P < 0.05). The increase in MHC-B in LBW offspring concurred with a 41% increase in total collagen content and a 33 and 56% increase in relative and total α-actin content, respectively (P < 0.05). Thus aortic wall stiffening in adulthood can be traced to altered matrix composition established under suboptimal intrauterine conditions that is amplified postnatally by the activity of synthetic VSMCs. Topics: Animals; Aorta; Aortic Diseases; Collagen; Elastin; Female; Fetal Growth Retardation; Guinea Pigs; Placental Insufficiency; Pregnancy | 2011 |
Uteroplacental insufficiency programs regional vascular dysfunction and alters arterial stiffness in female offspring.
Intrauterine growth restriction caused by uteroplacental insufficiency increases the risk of cardiovascular disease in adulthood. Vascular mechanisms in female offspring are poorly understood. The aim of this study was to investigate the effects of uteroplacental insufficiency on blood pressure, vascular reactivity and arterial stiffness in four vascular beds in female offspring born growth restricted. Uteroplacental insufficiency was induced on day 18 of gestation in Wistar Kyoto rats by bilateral uterine vessel ligation (Restricted) or sham surgery (Controls). Wire and pressure myography were used to test endothelial and smooth muscle function, and passive mechanical wall properties, respectively, in uterine, mesenteric, renal and femoral arteries of 18-month-old female offspring. Collagen and elastin fibres were quantified using circular crossed-polarized light microscopy and quantitative real time polymerase chain reaction. Restricted female offspring were born 10-15% smaller. Restricted females were normotensive, had plasma triglycerides 2-fold elevated and had uterine endothelial dysfunction, attributed to a 23% reduction in the maximal relaxation produced by endothelium-derived hyperpolarizing factor. Uterine artery stiffness was increased, with an augmented proportion of thick and decreased proportion of thin collagen fibres. Vascular reactivity and mechanical wall properties were preserved in mesenteric, renal and femoral arteries in growth restricted females. Female offspring born growth restricted have selective uterine artery endothelial dysfunction and increased wall stiffness. The preserved vascular function in other arteries may explain the lack of hypertension in these females. The uterine artery specific dysfunction has potential implications for impaired pregnancy adaptations and a compromised intrauterine environment of the next generation. Topics: Animals; Arteries; Blood Pressure; Body Weight; Cardiovascular Diseases; Collagen; Elastin; Endothelium, Vascular; Female; Lipids; Litter Size; Muscle Relaxation; Muscle, Smooth, Vascular; Placental Insufficiency; Pregnancy; Rats; Rats, Inbred WKY; Risk; RNA; Uterus; Vascular Diseases | 2010 |