elastin has been researched along with Hypertrophy--Right-Ventricular* in 13 studies
13 other study(ies) available for elastin and Hypertrophy--Right-Ventricular
Article | Year |
---|---|
Remodeling Matrix Synthesis in a Rat Model of Aortocaval Fistula and the Cyclic Stretch: Impaction in Pulmonary Arterial Hypertension-Congenital Heart Disease.
Pulmonary arterial hypertension-congenital heart disease (PAH-CHD) is characterized by systemic to pulmonary arterial shunts and sensitively responds to volume overload and stretch of the vascular wall leading to pulmonary vascular remodeling. We hypothesized that the responses of pulmonary artery smooth muscle cells (PASMCs) to mechanical stress-associated volume overload may promote vascular remodeling in PAH-CHD. Here, we show that significantly increased collagen was in the PA adventitial layer by trichrome staining in PAH-CHD patients and an aortocaval fistula (ACF) rat model in which chronic vascular volume overload induced-PAH. We assessed the gene expression profiles of SMC markers, extracellular matrix, and collagen in isolated SMCs from pulmonary and thoracic vessels with cyclic stretch-triggered responses by real-time PCR analysis. The data corresponded to collagen deposition, which modulated pulmonary vascular remodeling in clinical and experimental PAH-ACF cases as well as in cyclic stretch-triggered SMCs in an in vitro model. We observe that collagen I A2 (COLIA2) is expressed in the control rat, but collagen I A1 (COLIA1) and Notchs remarkably increase in the lungs of ACF rats. Interestingly, closing the left-to-right shunt that leads to a reduced blood volume in the PA system of ACF rats (ACFRs) decreased the expression of COLIA1 and increased that of collagen I A2(COLIA2). This study contributes to the stretch-induced responses of SMCs and provides important future directions for therapies aimed at preventing abnormal matrix protein synthesis in volume overload-induced pulmonary hypertension (PH). Topics: Animals; Collagen; Disease Models, Animal; Elastin; Humans; Hypertrophy, Right Ventricular; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Pulmonary Arterial Hypertension; Pulmonary Artery; Pulmonary Circulation; Rats; Receptors, Notch; Stress, Mechanical; Vascular Remodeling; Vascular Stiffness | 2020 |
Ventricular remodeling of single-chambered myh6
Zebrafish (Danio rerio) is widely used as an animal model to understand the pathophysiology of cardiovascular diseases. Here, we present the adult cardiac phenotype of weak atrium, myh6 Topics: Animals; Disease Models, Animal; Elastin; Heart Atria; Hyperplasia; Hypertrophy, Left Ventricular; Hypertrophy, Right Ventricular; Mutation; Myocytes, Cardiac; Myosin Heavy Chains; Zebrafish; Zebrafish Proteins | 2019 |
Experimental Right Ventricular Hypertension Induces Regional β1-Integrin-Mediated Transduction of Hypertrophic and Profibrotic Right and Left Ventricular Signaling.
Development of right ventricular (RV) hypertension eventually contributes to RV and left ventricular (LV) myocardial fibrosis and dysfunction. The molecular mechanisms are not fully elucidated.. Pulmonary artery banding was used to induce RV hypertension in rats in vivo. Then, we evaluated cardiac function and regional remodeling 6 weeks after pulmonary artery banding. To further elucidate mechanisms responsible for regional cardiac remodeling, we also mimicked RV hypertensive stress by cyclic mechanical stretching applied to confluent cultures of cardiac fibroblasts, isolated from the RV free wall, septal hinge points, and LV free wall. Echocardiography and catheter evaluation demonstrated that rats in the pulmonary artery banding group developed RV hypertension with leftward septal displacement, LV compression, and increased LV end-diastolic pressures. Picrosirius red staining indicated that pulmonary artery banding induced marked RV fibrosis and dysfunction, with prominent fibrosis and elastin deposition at the septal hinge points but less LV fibrosis. These changes were associated with proportionally increased expressions of integrin-β1 and profibrotic signaling proteins, including phosphorylated Smad2/3 and transforming growth factor-β1. Moreover, mechanically stretched fibroblasts also expressed significantly increased levels of α-smooth muscle actin, integrin-β1, transforming growth factor-β1, collagen I deposition, and wrinkle formation on gel assays, consistent with myofibroblast transformation. These changes were not observed in parallel cultures of mechanically stretched fibroblasts, preincubated with the integrin inhibitor (BTT-3033).. Experimentally induced RV hypertension triggers regional RV, hinge-point, and LV integrin β1-dependent mechanotransduction signaling pathways that eventually trigger myocardial fibrosis via transforming growth factor-β1 signaling. Reduced LV fibrosis and preserved global function, despite geometrical and pressure aberrations, suggest a possible elastin-mediated protective mechanism at the septal hinge points. Topics: Animals; Arterial Pressure; Cells, Cultured; Collagen Type I; Disease Models, Animal; Elastin; Fibrosis; Heart Ventricles; Hypertension, Pulmonary; Hypertrophy, Left Ventricular; Hypertrophy, Right Ventricular; Integrin beta1; Male; Mechanotransduction, Cellular; Pulmonary Artery; Rats, Sprague-Dawley; Transforming Growth Factor beta1; Ventricular Function, Left; Ventricular Function, Right; Ventricular Remodeling | 2018 |
Dose-dependent effects of glucocorticoids on pulmonary vascular development in a murine model of hyperoxic lung injury.
Exposure of neonatal mice to hyperoxia results in pulmonary vascular remodeling and aberrant phosphodiesterase type 5 (PDE5) signaling. Although glucocorticoids are frequently utilized in the NICU, little is known about their effects on the developing pulmonary vasculature and on PDE5. We sought to determine the effects of hydrocortisone (HC) on pulmonary vascular development and on PDE5 in a neonatal mouse model of hyperoxic lung injury.. C57BL/6 mice were placed in 21% O2 or 75% O2 within 24 h of birth and received HC (1, 5, or 10 mg/kg subcutaneously every other day) or vehicle. At 14 d, right ventricular hypertrophy (RVH), medial wall thickness (MWT), lung morphometry, and pulmonary artery (PA) PDE5 activity were assessed. PDE5 activity was measured in isolated pulmonary artery smooth muscle cells exposed to 21 or 95% O2 ± 100 nmol/l HC for 24 h.. Hyperoxia resulted in alveolar simplification, RVH, increased MWT, and increased PA PDE5 activity. HC decreased hyperoxia-induced RVH and attenuated MWT. HC had dose-dependent effects on alveolar simplification. HC decreased hyperoxia-induced PDE5 activity both in vivo and in vitro.. HC decreases hyperoxia-induced pulmonary vascular remodeling and attenuates PDE5 activity. These findings suggest that HC may protect against hyperoxic injury in the developing pulmonary vasculature. Topics: Animals; Cyclic Nucleotide Phosphodiesterases, Type 5; Dose-Response Relationship, Drug; Elastin; Glucocorticoids; Humans; Hydrocortisone; Hyperoxia; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Lung; Lung Injury; Mice; Mice, Inbred C57BL; Pulmonary Alveoli; Pulmonary Artery; Signal Transduction | 2016 |
Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response.
Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic option for BPD by reducing pulmonary inflammation and fibrosis and improving vascularization. We investigated the therapeutic potential of daily treatment with 25 and 100 mg/kg metformin, injected subcutaneously in neonatal Wistar rats with severe experimental BPD, induced by continuous exposure to 100% oxygen for 10 days. Parameters investigated included survival, lung and heart histopathology, pulmonary fibrin and collagen deposition, vascular leakage, right ventricular hypertrophy, and differential mRNA expression in the lungs of key genes involved in BPD pathogenesis, including inflammation, coagulation, and alveolar development. After daily metformin treatment rat pups with experimental BPD had reduced mortality, alveolar septum thickness, lung inflammation, and fibrosis, demonstrated by a reduced influx of macrophages and neutrophils and hyperoxia-induced collagen III and fibrin deposition (25 mg/kg), as well as improved vascularization (100 mg/kg) compared with control treatment. However, metformin did not ameliorate alveolar enlargement, small arteriole wall thickening, vascular alveolar leakage, and right ventricular hypertrophy. In conclusion metformin prolongs survival and attenuates pulmonary injury by reducing pulmonary inflammation, coagulation, and fibrosis but does not affect alveolar development or prevent pulmonary arterial hypertension and right ventricular hypertrophy in neonatal rats with severe hyperoxia-induced experimental BPD. Topics: Animals; Animals, Newborn; Anti-Inflammatory Agents; Bronchopulmonary Dysplasia; Capillary Permeability; Collagen; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Elastin; Fibrin; Gene Expression; Hypertrophy, Right Ventricular; Lung; Metformin; Rats, Wistar | 2015 |
Intrauterine endotoxin-induced impairs pulmonary vascular function and right ventricular performance in infant rats and improvement with early vitamin D therapy.
High pulmonary vascular resistance (PVR), proximal pulmonary artery (PA) impedance, and right ventricular (RV) afterload due to remodeling contribute to the pathogenesis and severity of pulmonary hypertension (PH). Intra-amniotic exposure to endotoxin (ETX) causes sustained PH and high mortality in rat pups at birth, which are associated with impaired vascular growth and RV hypertrophy in survivors. Treatment of ETX-exposed pups with antenatal vitamin D (vit D) improves survival and lung growth, but the effects of ETX exposure on RV-PA coupling in the neonatal lung are unknown. We hypothesized that intrauterine ETX impairs RV-PA coupling through sustained abnormalities of PA stiffening and RV performance that are attenuated with vit D therapy. Fetal rats were exposed to intra-amniotic injections of ETX, ETX+vit D, or saline at 20 days gestation (term = 22 days). At postnatal day 14, pups had pressure-volume measurements of the RV and isolated proximal PA, respectively. Lung homogenates were assayed for extracellular matrix (ECM) composition by Western blot. We found that ETX lungs contain decreased α-elastin, lysyl oxidase, collagen I, and collagen III proteins (P < 0.05) compared control and ETX+vit D lungs. ETX-exposed animals have increased RV mechanical stroke work (P < 0.05 vs. control and ETX+vit D) and elastic potential energy (P < 0.05 vs. control and ETX+vit D). Mechanical stiffness and ECM remodeling are increased in the PA (P < 0.05 vs. control and ETX+vit D). We conclude that intrauterine exposure of fetal rats to ETX during late gestation causes persistent impairment of RV-PA coupling throughout infancy that can be prevented with early vit D treatment. Topics: Animals; Animals, Newborn; Elastin; Endotoxins; Female; Heart Ventricles; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Lung; Pregnancy; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Respiratory Physiological Phenomena; Vascular Resistance; Vitamin D | 2015 |
Lysyl oxidases play a causal role in vascular remodeling in clinical and experimental pulmonary arterial hypertension.
Pulmonary vascular remodeling, the pathological hallmark of pulmonary arterial hypertension, is attributed to proliferation, apoptosis resistance, and migration of vascular cells. A role of dysregulated matrix cross-linking and stability as a pathogenic mechanism has received little attention. We aimed to assess whether matrix cross-linking enzymes played a causal role in experimental pulmonary hypertension (PH).. All 5 lysyl oxidases were detected in concentric and plexiform vascular lesions of patients with idiopathic pulmonary arterial hypertension. Lox, LoxL1, LoxL2, and LoxL4 expression was elevated in lungs of patients with idiopathic pulmonary arterial hypertension, whereas LoxL2 and LoxL3 expression was elevated in laser-capture microdissected vascular lesions. Lox expression was hypoxia-responsive in pulmonary artery smooth muscle cells and adventitial fibroblasts, whereas LoxL1 and LoxL2 expression was hypoxia-responsive in adventitial fibroblasts. Lox expression was increased in lungs from hypoxia-exposed mice and in lungs and pulmonary artery smooth muscle cells of monocrotaline-treated rats, which developed PH. Pulmonary hypertensive mice exhibited increased muscularization and perturbed matrix structures in vessel walls of small pulmonary arteries. Hypoxia exposure led to increased collagen cross-linking, by dihydroxylysinonorleucine and hydroxylysinonorleucine cross-links. Administration of the lysyl oxidase inhibitor β-aminopropionitrile attenuated the effect of hypoxia, limiting perturbations to right ventricular systolic pressure, right ventricular hypertrophy, and vessel muscularization and normalizing collagen cross-linking and vessel matrix architecture.. Lysyl oxidases are dysregulated in clinical and experimental PH. Lysyl oxidases play a causal role in experimental PH and represent a candidate therapeutic target. Our proof-of-principle study demonstrated that modulation of lung matrix cross-linking can affect pulmonary vascular remodeling associated with PH. Topics: Adult; Aged, 80 and over; Animals; Antihypertensive Agents; Case-Control Studies; Cell Hypoxia; Cells, Cultured; Collagen; Disease Models, Animal; Elastin; Enzyme Inhibitors; Familial Primary Pulmonary Hypertension; Female; Fibroblasts; Gene Expression Regulation, Enzymologic; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Isoenzymes; Male; Mice; Middle Aged; Monocrotaline; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Protein-Lysine 6-Oxidase; Pulmonary Artery; Rats; RNA, Messenger; Ventricular Dysfunction, Right; Young Adult | 2014 |
Right coronary artery becomes stiffer with increase in elastin and collagen in right ventricular hypertrophy.
Changes in blood flow influence the structure, function, mechanical properties, and remodeling of arteries. The objective of the present study was to investigate the role of increased blood flow on the biaxial incremental elastic moduli of the porcine right coronary artery (RCA) and to determine the microstructural basis for the changes in moduli. We hypothesized that an increase in RCA flow will lead to increased stiffness in conjunction with remodeling of elastin and collagen in the vessel wall. The control and experimental groups consisted of five RCA vessels each. The RCA of the experimental group was exposed to 4 wk of flow-overload in right ventricular hypertrophy induced by pulmonary artery banding. Stress-strain relationships were determined and the incremental elastic moduli were derived in the circumferential, axial, and cross directions. The results show a significant increase in the elastic moduli in the circumferential (262.7 +/- 15.7 vs. 120.2 +/- 12.4 kPa; P < 0.001), axial (177.8 +/- 25.5 vs. 100.3 +/- 11.9 kPa; P = 0.025), and cross directions (104.8 +/- 8.2 vs. 68.2 +/- 8.6 kPa; P = 0.016) of the experimental RCA compared with controls. Multiphoton microscopy was used to assess the changes in elastin and collagen content in the media and adventitia of the vessel wall. We found a significant increase in elastin and collagen area fraction particularly in the adventitial layer. These data suggest stiffening of the vessel wall as a result of increased elastin and more predominantly collagen. Topics: Algorithms; Anesthesia; Animals; Blood Pressure; Collagen; Coronary Vessels; Elastin; Hypertrophy, Right Ventricular; Least-Squares Analysis; Male; Muscle, Smooth, Vascular; Swine | 2009 |
Elastin insufficiency predisposes to elevated pulmonary circulatory pressures through changes in elastic artery structure.
Elastin is a major structural component of large elastic arteries and a principal determinant of arterial biomechanical properties. Elastin loss-of-function mutations in humans have been linked to the autosomal-dominant disease supravalvular aortic stenosis, which is characterized by stenotic lesions in both the systemic and pulmonary circulations. To better understand how elastin insufficiency influences the pulmonary circulation, we evaluated pulmonary cardiovascular physiology in a unique set of transgenic and knockout mice with graded vascular elastin dosage (range 45-120% of wild type). The central pulmonary arteries of elastin-insufficient mice had smaller internal diameters (P < 0.0001), thinner walls (P = 0.002), and increased opening angles (P = 0.002) compared with wild-type controls. Pulmonary circulatory pressures, measured by right ventricular catheterization, were significantly elevated in elastin-insufficient mice (P < 0.0001) and showed an inverse correlation with elastin level. Although elastin-insufficient animals exhibited mild to moderate right ventricular hypertrophy (P = 0.0001) and intrapulmonary vascular remodeling, the changes were less than expected, given the high right ventricular pressures, and were attenuated compared with those seen in hypoxia-induced models of pulmonary arterial hypertension. The absence of extensive pathological cardiac remodeling at the high pressures in these animals suggests a developmental adaptation designed to maintain right-sided cardiac output in a vascular system with altered elastin content. Topics: Adaptation, Physiological; Animals; Blood Pressure; Elastin; Female; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Pulmonary Artery; Pulmonary Circulation; Stress, Mechanical; Ventricular Function, Right; Ventricular Pressure | 2008 |
Reactivation of gammaHV68 induces neointimal lesions in pulmonary arteries of S100A4/Mts1-overexpressing mice in association with degradation of elastin.
S100A4/Mts-overexpressing mice have thick elastic laminae and mild pulmonary arterial hypertension (PAH), and the occasional older mouse develops occlusive neointimal lesions and perivascular inflammation. We hypothesized that a vasculotropic virus could induce neointimal lesions in the S100A4/Mts1 mouse by facilitating breakdown of elastin and migration and proliferation of smooth muscle cells. To test this hypothesis, we infected S100A4/Mts1 mice with gammaherpesvirus 68 (gammaHV68). We observed, 6 mo after gammaHV68 [4 x 10(3) plaque-forming units (PFU)], perivascular inflammation in 10/15 S100A4/Mts1 mice and occlusive neointimal formation in 3/10 mice, accompanied by striking degradation of elastin. We then compared the early response after high-dose gammaHV68 (4 x 10(6) PFU) in C57Bl/6 and S100A4/Mts1 mice. In S100A4/Mts1 mice only, significant PAH, muscularization of distal vessels, and elastase activity were observed 6 wk after gammaHV68. These features resolved by 3 mo without neointimal formation. We therefore infected mice with the M1-gammaHV68 strain that reactivates from latency with higher efficiency and observed neointimal lesions at 3 mo in 2/5 C57Bl/6 (5-9% of vessels) and in 5/5 S100A4/Mts1 mice (13-40% of vessels) accompanied by mild PAH, heightened lung elastase activity, and intravascular viral expression. This suggested that enhanced generation of elastin peptides in S100A4/Mts1 mice may promote increased viral entry in the vessel wall. Using S100A4/Mts1 PA organ culture, we showed, in response to elastase activity, heightened production of elastin peptides associated with invasion of inflammatory cells and intravascular viral antigen. We therefore propose that early viral access to the vessel wall may be a critical determinant of the extent of vascular pathology following reactivation. Topics: Animals; Antigens, Viral; Blood Pressure; Elastin; Gammaherpesvirinae; Herpesviridae Infections; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Mice; Mice, Inbred C57BL; Models, Biological; Mutation; Peptides; Protein Processing, Post-Translational; Pulmonary Artery; S100 Calcium-Binding Protein A4; S100 Proteins; Viral Load; Virus Activation; Virus Internalization | 2008 |
Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling.
Thiazolidinediones (TZDs) are insulin-sensitizing agents that also decrease systemic blood pressure, attenuate the formation of atherosclerotic lesions, and block remodeling of injured arterial walls. Recently, TZDs were shown to prevent pulmonary arterial (PA) remodeling in rats treated with monocrotaline. Presently we report studies testing the ability of the TZD rosiglitazone (ROSI) to attenuate pathological arterial remodeling in the lung and prevent the development of pulmonary hypertension (PH) in rats subjected to chronic hypoxia. PA remodeling was reduced in ROSI-treated animals exposed to hypoxia compared with animals exposed to hypoxia alone. ROSI treatment blocked muscularization of distal pulmonary arterioles and reversed remodeling and neomuscularization in lungs of animals previously exposed to chronic hypoxia. Decreased PA remodeling in ROSI-treated animals was associated with decreased smooth muscle cell proliferation, decreased collagen and elastin deposition, and increased matrix metalloproteinase-2 activity in the PA wall. Cells expressing the c-Kit cell surface marker were observed in the PA adventitia of untreated animals exposed to hypoxia but not in ROSI-treated hypoxic rats. Right ventricular hypertrophy and cardiomyocyte hypertrophy were also blunted in ROSI-treated hypoxic animals. Interestingly, mean PA pressures were elevated equally in the untreated and ROSI-treated groups, indicating that ROSI had no effect on the development of PH. However, mean PA pressure was normalized acutely in both groups of hypoxia-exposed animals by Fasudil, an agent that inhibits RhoA/Rho kinase-mediated vasoconstriction. We conclude that ROSI can attenuate and reverse PA remodeling and neomuscularization associated with hypoxic PH. However, this agent fails to block the development of PH, apparently because of its inability to repress sustained Rho kinase-mediated arterial vasoconstriction. Topics: Animals; Blood Pressure; Collagen; Elastin; Extracellular Matrix; Female; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Male; PPAR gamma; Proto-Oncogene Proteins c-kit; Pulmonary Artery; Rats; Rats, Inbred WKY; Rosiglitazone; Thiazolidinediones | 2007 |
Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension.
Increased serine elastase activity has been implicated in the vascular remodeling associated with chronic hypoxia-related pulmonary hypertension in rats.. In this study we determined the time course of hypoxia-induced serine elastase activity in the murine lung and related this to initiation of a proteolytic cascade characterized by an increase in matrix metalloproteinases (MMPs). We then used transgenic mice in which overexpression of the selective serine elastase inhibitor elafin was targeted to the cardiovascular system to determine whether upregulation of a naturally occurring serine elastase inhibitor suppresses MMPs and the hemodynamic and structural response to chronic hypoxia (air at 380 mm Hg). In nontransgenic but not in elafin-transgenic mice, we documented a transient increase in serine elastase activity after 12 hours of hypoxic exposure attributed to a 30-kDa protein as determined by elastin zymography and fluorophosphonate/fluorophosphate-biotin labeling. Two days after hypoxia, the pro-forms of MMP-2 and MMP-9 were induced in the nontransgenic mice, but MMP-9 was suppressed in elafin-transgenic mice. Acute hypoxic vasoconstriction was similar in nontransgenic and elafin-transgenic littermates. Chronic hypoxia for 26 days resulted in >1-fold increase in right ventricular pressure (P<0.004) in nontransgenic compared with control or elafin-transgenic littermates. In the latter mice, normalization of the right ventricular pressure was associated with reduced muscularization and preservation of the number of distal vessels (P<0.04 for both comparisons).. Modulation of the severity of chronic hypoxia-induced pulmonary vascular disease could be a function of endogenously expressed serine elastase inhibitors. Topics: Actins; Animals; Elastin; Endothelin-1; Hematocrit; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Kinetics; Matrix Metalloproteinases; Mice; Mice, Transgenic; Pressure; Proteinase Inhibitory Proteins, Secretory; Proteins; Pulmonary Artery; RNA, Messenger; Serine Proteinase Inhibitors; Up-Regulation; Ventricular Pressure | 2002 |
Secretory leukoprotease inhibitor attenuates lung injury induced by continuous air embolization into sheep.
Continuous air embolization (CAE) into the pulmonary arterial circulation of sheep results in functional and structural changes of chronic pulmonary hypertension. Release of elastin peptides into lung lymph during CAE and attenuation of CAE-induced pulmonary hypertension by neutrophil depletion suggest that neutrophil elastase may contribute to these changes. To investigate this notion, we treated awake sheep with a potent neutrophil elastase inhibitor, recombinant secretory leukoprotease inhibitor (SLPI) (100 mg/day by aerosol), during 12 days of CAE (CAE+SLPI; n = 7). Controls included sheep receiving CAE + vehicle (VEH) (n = 6), VEH alone (n = 3), and SLPI alone (n = 3). SLPI significantly attenuated the CAE-induced increases in lung lymph flow (day 8; 2.3 +/- 0.5 vs. 5.6 +/- 1.7 ml/15 min), protein clearance (day 8; 1.36 +/- 0.32 vs. 3.08 +/- 0.84 ml/15 min), and elastin peptide concentration (day 8; 243 +/- 41 vs. 398 +/- 44 ng/ml). SLPI delayed the onset of sustained pulmonary hypertension from day 8 to day 12. Both CAE groups showed similar structural changes in the pulmonary arteries. SLPI was well tolerated in control sheep and did not affect hemodynamics or structure. We conclude that serine proteases may contribute to the early initiation of chronic pulmonary hypertension but do not play a striking role in its eventual development. Topics: Aerosols; Animals; Capillary Permeability; Elastin; Embolism, Air; Hemodynamics; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Lung; Lung Injury; Lymph; Proteinase Inhibitory Proteins, Secretory; Proteins; Pulmonary Circulation; Pulmonary Gas Exchange; Recombinant Proteins; Secretory Leukocyte Peptidase Inhibitor; Serine Proteinase Inhibitors; Sheep; Vascular Resistance | 1995 |