elastin has been researched along with Acute-Lung-Injury* in 4 studies
4 other study(ies) available for elastin and Acute-Lung-Injury
Article | Year |
---|---|
Vitamin K2 (MK-7) attenuates LPS-induced acute lung injury via inhibiting inflammation, apoptosis, and ferroptosis.
Acute lung injury (ALI) is a life-threatening disease that has received considerable critical attention in the field of intensive care. This study aimed to explore the role and mechanism of vitamin K2 (VK2) in ALI. Intraperitoneal injection of 7 mg/kg LPS was used to induce ALI in mice, and VK2 injection was intragastrically administered with the dose of 0.2 and 15 mg/kg. We found that VK2 improved the pulmonary pathology, reduced myeloperoxidase (MPO) activity and levels of TNF-α and IL-6, and boosted the level of IL-10 of mice with ALI. Moreover, VK2 played a significant part in apoptosis by downregulating and upregulating Caspase-3 and Bcl-2 expressions, respectively. As for further mechanism exploration, we found that VK2 inhibited P38 MAPK signaling. Our results also showed that VK2 inhibited ferroptosis, which manifested by reducing malondialdehyde (MDA) and iron levels, increasing glutathione (GSH) level, and upregulated and downregulated glutathione peroxidase 4 (GPX4) and heme oxygenase-1 (HO-1) expressions, respectively. In addition, VK2 also inhibited elastin degradation by reducing levels of uncarboxylated matrix Gla protein (uc-MGP) and desmosine (DES). Overall, VK2 robustly alleviated ALI by inhibiting LPS-induced inflammation, apoptosis, ferroptosis, and elastin degradation, making it a potential novel therapeutic candidate for ALI. Topics: Acute Lung Injury; Animals; Apoptosis; Elastin; Ferroptosis; Inflammation; Lipopolysaccharides; Lung; Mice; Vitamin K 2 | 2023 |
Elastin degradation products in acute lung injury induced by gastric contents aspiration.
Gastric contents aspiration is a high-risk condition for acute lung injury (ALI). Consequences range from subclinical pneumonitis to respiratory failure, depending on the volume of aspirate. A large increment in inflammatory cells, an important source of elastase, potentially capable of damaging lung tissue, has been described in experimental models of aspiration. We hypothesized that in early stages of aspiration-induced ALI, there is proteolytic degradation of elastin, preceding collagen deposition. Our aim was to evaluate whether after a single orotracheal instillation of gastric fluid, there is evidence of elastin degradation.. Anesthesized Sprague-Dawley rats received a single orotracheal instillation of gastric fluid and were euthanized 4, 12 and 24 h and at day 4 after instillation (n = 6/group). We used immunodetection of soluble elastin in lung tissue and BALF and correlated BALF levels of elastin degradation products with markers of ALI. We investigated possible factors involved in elastin degradation and evaluated whether a similar pattern of elastin degradation can be found in BALF samples of patients with interstitial lung diseases known to have aspirated. Non-parametric ANOVA (Kruskall-Wallis) and linear regression analysis were used.. We found evidence of early proteolytic degradation of lung elastin. Elastin degradation products are detected both in lung tissue and BALF in the first 24 h and are significantly reduced at day 4. They correlate significantly with ALI markers, particularly PMN cell count, are independent of acidity and have a similar molecular weight as those obtained using pancreatic elastase. Evaluation of BALF from patients revealed the presence of elastin degradation products not present in controls that are similar to those found in BALF of rats treated with gastric fluid.. A single instillation of gastric fluid into the lungs induces early proteolytic degradation of elastin, in relation to the magnitude of alveolar-capillary barrier derangement. PMN-derived proteases released during ALI are mostly responsible for this damage. BALF from patients showed elastin degradation products similar to those found in rats treated with gastric fluid. Long-lasting effects on lung elastic properties could be expected under conditions of repeated instillations of gastric fluid in experimental animals or repeated aspiration events in humans. Topics: Acute Lung Injury; Animals; Elastin; Gastric Juice; Male; Pneumonia, Aspiration; Rats; Rats, Sprague-Dawley | 2018 |
Aging exacerbates acute lung injury-induced changes of the air-blood barrier, lung function, and inflammation in the mouse.
Acute lung injury (ALI) is characterized by hypoxemia, enhanced permeability of the air-blood barrier, and pulmonary edema. Particularly in the elderly, ALI is associated with increased morbidity and mortality. The reasons for this, however, are poorly understood. We hypothesized that age-related changes in pulmonary structure, function, and inflammation lead to a worse prognosis in ALI. ALI was induced in young (10 wk old) and old (18 mo old) male C57BL/6 mice by intranasal application of 2.5 mg lipopolysaccharide (LPS)/kg body wt or saline (control mice). After 24 h, lung function was assessed, and lungs were either processed for stereological or inflammatory analysis, such as bronchoalveolar lavage fluid (BALF) cytometry and qPCR. Both young and old mice developed severe signs of ALI, including alveolar and septal edema and enhanced inflammatory BALF cells. However, the pathology of ALI was more pronounced in old compared with young mice with nearly sixfold higher BALF protein concentration, twice the number of neutrophils, and significantly higher expression of neutrophil chemokine Cxcl1, adhesion molecule Icam-1, and metalloprotease-9, whereas the expression of tight junction protein occludin significantly decreased. The old LPS mice had thicker alveolar septa attributable to higher volumes of interstitial cells and extracellular matrix. Tissue resistance and elastance reflected observed changes at the ultrastructural level in the lung parenchyma in ALI of young and old mice. In summary, the pathology of ALI with advanced age in mice is characterized by a greater neutrophilic inflammation, leakier air-blood barrier, and altered lung function, which is in line with findings in elderly patients. Topics: Acute Lung Injury; Aging; Animals; Blood-Air Barrier; Body Weight; Bronchoalveolar Lavage Fluid; Cell Count; Collagen; Disease Progression; Elastin; Extracellular Matrix; Flow Cytometry; Gene Expression Regulation; Lipopolysaccharides; Lung; Male; Mice, Inbred C57BL; Pneumonia; Pulmonary Alveoli; Respiratory Function Tests | 2017 |
ADAM9 is a novel product of polymorphonuclear neutrophils: regulation of expression and contributions to extracellular matrix protein degradation during acute lung injury.
A disintegrin and a metalloproteinase domain (ADAM) 9 is known to be expressed by monocytes and macrophages. In this study, we report that ADAM9 is also a product of human and murine polymorphonuclear neutrophils (PMNs). ADAM9 is not synthesized de novo by circulating PMNs. Rather, ADAM9 protein is stored in the gelatinase and specific granules and the secretory vesicles of human PMNs. Unstimulated PMNs express minimal quantities of surface ADAM9, but activation of PMNs with degranulating agonists rapidly (within 15 min) increases PMN surface ADAM9 levels. Human PMNs produce small quantities of soluble forms of ADAM9. Surprisingly, ADAM9 degrades several extracellular matrix (ECM) proteins, including fibronectin, entactin, laminin, and insoluble elastin, as potently as matrix metalloproteinase-9. However, ADAM9 does not degrade types I, III, or IV collagen or denatured collagens in vitro. To determine whether Adam9 regulates PMN recruitment or ECM protein turnover during inflammatory responses, we compared wild-type and Adam9(-/-) mice in bacterial LPS- and bleomycin-mediated acute lung injury (ALI). Adam9 lung levels increase 10-fold during LPS-mediated ALI in wild-type mice (due to increases in leukocyte-derived Adam9), but Adam9 does not regulate lung PMN (or macrophage) counts during ALI. Adam9 increases mortality, promotes lung injury, reduces lung compliance, and increases degradation of lung elastin during LPS- and/or bleomycin-mediated ALI. Adam9 does not regulate collagen accumulation in the bleomycin-treated lung. Thus, ADAM9 is expressed in an inducible fashion on PMN surfaces where it degrades some ECM proteins, and it promotes alveolar-capillary barrier injury during ALI in mice. Topics: Acute Lung Injury; ADAM Proteins; Animals; Antibiotics, Antineoplastic; Bleomycin; Blood-Air Barrier; Collagen; Elastin; Extracellular Matrix; Humans; Lipopolysaccharides; Membrane Proteins; Mice; Mice, Knockout; Neutrophils; Proteolysis | 2014 |