elafin has been researched along with Helicobacter-Infections* in 2 studies
2 other study(ies) available for elafin and Helicobacter-Infections
Article | Year |
---|---|
Gastric antimicrobial peptides fail to eradicate Helicobacter pylori infection due to selective induction and resistance.
Although antimicrobial peptides protect mucus and mucosa from bacteria, Helicobacter pylori is able to colonize the gastric mucus. To clarify in which extend Helicobacter escapes the antimicrobial defense, we systematically assessed susceptibility and expression levels of different antimicrobial host factors in gastric mucosa with and without H. pylori infection.. We investigated the expression levels of HBD1 (gene name DEFB1), HBD2 (DEFB4A), HBD3 (DEFB103A), HBD4 (DEFB104A), LL37 (CAMP) and elafin (PI3) by real time PCR in gastric biopsy samples in a total of 20 controls versus 12 patients colonized with H. pylori. Immunostaining was performed for HBD2 and HBD3. We assessed antimicrobial susceptibility by flow cytometry, growth on blood agar, radial diffusion assay and electron microscopy.. H. pylori infection was associated with increased gastric levels of the inducible defensin HBD2 and of the antiprotease elafin, whereas the expression levels of the constitutive defensin HBD1, inducible HBD3 and LL37 remained unchanged. HBD4 was not expressed in significant levels in gastric mucosa. H. pylori strains were resistant to the defensins HBD1 as well as to elafin, and strain specific minimally susceptible to HBD2, whereas HBD3 and LL37 killed all H. pylori strains effectively. We demonstrated the binding of HBD2 and LL37 on the surface of H. pylori cells. Comparing the antibacterial activity of extracts from H. pylori negative and positive biopsies, we found only a minimal killing against H. pylori that was not increased by the induction of HBD2 in H. pylori positive samples.. These data support the hypothesis that gastric H. pylori evades the host defense shield to allow colonization. Topics: Adult; Aged; Aged, 80 and over; Antimicrobial Cationic Peptides; beta-Defensins; Cathelicidins; Disease Resistance; Disk Diffusion Antimicrobial Tests; Elafin; Female; Gastric Mucosa; Gastritis; Gene Expression Regulation; Helicobacter Infections; Helicobacter pylori; Humans; Male; Middle Aged; Young Adult | 2013 |
Promotion of cytoplasmic mislocalization of p27 by Helicobacter pylori in gastric cancer.
The cyclin-dependent kinase (CDK) inhibitor p27 has an important role in cell cycle regulation. Reduced expression of p27 is commonly associated with poor prognosis in many malignancies, including gastric cancer. Cytoplasmic p27 mislocalization may be an additional indicator of high-grade tumors and poor prognosis in cancer. As chronic infection by Helicobacter pylori is the most important risk factor for gastric cancer development, we evaluated the effects of H. pylori on p27 expression and localization in gastric cancer cells. Co-culture of gastric cells with H. pylori induced cytoplasmic p27 expression and reduced nuclear p27 expression in vitro. Cytoplasmic p27 expression was associated with and dependent upon phosphorylation of p27 at T157 and T198: wild-type p27 accumulated in the cytoplasm, but non-phosphorylatable mutants affecting T157 or T198 were nuclear in H. pylori-infected cells. These post-translational p27 changes were secondary to activation of cellular phosphoinositide-3 kinase (PI3K) and AKT signaling pathways, and dependent upon a functional H. pylori cag pathogenicity island. We investigated the clinical significance of cytoplasmic p27 mislocalization in 164 cases of resected gastric cancer in tissue microarrays. In 97 cases (59%), cytoplasmic p27 mislocalization was observed, and this was associated with increased mortality in multivariate analysis. These results show that H. pylori infection induces AKT/PI3K-mediated phosphorylation of p27 at T157 and T198 to cause cytoplasmic p27 mislocalization in gastric cancer, and that p27 mislocalization is an adverse prognostic feature in gastric cancer. This is the first demonstration of the translocation of a specific bacterial virulence factor that post-translationally regulates a host cell CDK inhibitor. This is of particular significance, because p27 has both tumor-suppressive and oncogenic activities, depending upon its subcellular localization. Cytoplasmic mislocalization of p27 induced by H. pylori may be an important mechanistic link between H. pylori infection and gastric carcinogenesis. Topics: Cell Line, Tumor; Coculture Techniques; Cyclin-Dependent Kinase Inhibitor p27; Cytosol; Elafin; Female; Helicobacter Infections; Helicobacter pylori; Humans; Male; Phosphorylation; Prognosis; Stomach Neoplasms | 2012 |