ekb-569 and Disease-Models--Animal

ekb-569 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for ekb-569 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Epidermal growth factor receptor tyrosine kinase inhibition is not protective in PCK rats.
    Kidney international, 2004, Volume: 66, Issue:5

    Advances in the understanding of cystogenesis, identification of the PKHD1 gene and availability of a rat model (the PCK rat) caused by a Pkhd1 mutation facilitate testing of therapies for autosomal-recessive polycystic kidney disease (ARPKD). Considerable support exists for the importance of the epidermal growth factor (EGF)/transforming growth factor-alpha (TGF-alpha)/EGF receptor (EGFR) axis and of the adenylyl cyclase-adenosine 3',5'-cyclic monophosphate (cAMP) pathway in the pathogenesis of cyst formation and progressive enlargement.. To determine whether EGFR tyrosine kinase inhibition is protective in the PCK rat, male and female animals were treated with EKI-785 or EKB-569 or with vehicle alone between 3 and 10 weeks of age. Biochemical and histomorphometric analysis, immunohistochemistry, immunoblotting, enzyme immunoassay, and quantitative reverse transcription-polymerase chain reaction (RT-PCR) were used to ascertain the effects of treatment.. Contrary to other murine models of ARPKD, overexpression and apical mislocalization of EGFR were not detected in the PCK rats. Consistent with these expression results, EKI-785 or EKB-569 administration had no effect or worsened PKD, and had no effect on the development of fibrocystic liver disease. Increased renal cAMP and vasopressin V2 receptor expression were observed in the EKI-785-treated animals.. EGFR tyrosine kinase inhibition did not protect PCK rats from the development of PKD. This may be due to effects on collecting duct cAMP that counteract possible beneficial effects on the extracellular-regulated protein kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway, particularly in the absence of EGFR overexpression or mislocalization. The relevance of these observations to the treatment of human cystic kidney diseases deserves further study.

    Topics: Aminoquinolines; Aniline Compounds; Animals; Cyclic AMP; Disease Models, Animal; ErbB Receptors; Female; Injections, Intraperitoneal; Intubation, Gastrointestinal; Kidney; Male; Organic Chemicals; Polycystic Kidney, Autosomal Recessive; Quinazolines; Rats; Rats, Inbred Strains; Rats, Sprague-Dawley; Receptors, Vasopressin; Severity of Illness Index

2004