ekb-569 and Breast-Neoplasms

ekb-569 has been researched along with Breast-Neoplasms* in 4 studies

Reviews

2 review(s) available for ekb-569 and Breast-Neoplasms

ArticleYear
Irreversible pan-ErbB tyrosine kinase inhibitors and breast cancer: current status and future directions.
    Cancer treatment reviews, 2009, Volume: 35, Issue:8

    Aberrant activation of HER2 through overexpression has been shown to play an important role in some breast cancers. Therapies against this receptor including the monoclonal antibody, trastuzumab, or the small tyrosine kinase inhibitor, lapatinib have shown to improve the prognosis of such patients. Despite overexpressing HER2, some patients do not respond to these targeted treatments or progress after a short period of time. Irreversible tyrosine kinase inhibitors have been developed to bypass several pathways that could be involved in this resistance. In vitro, these agents have been shown to be more potent and to prolong target inhibition. Clinical development of these agents is ongoing and early results are promising. This review will describe the biologic rationale that justifies the development of these agents in breast cancer focusing on the current status and future directions.

    Topics: Afatinib; Aminoquinolines; Aniline Compounds; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Biomarkers, Tumor; Breast Neoplasms; Drug Resistance, Neoplasm; ErbB Receptors; Female; Forecasting; Gene Expression Regulation, Neoplastic; Humans; Lapatinib; Morpholines; Prognosis; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Quinazolines; Quinolines; Trastuzumab; Up-Regulation

2009
The development of HKI-272 and related compounds for the treatment of cancer.
    Archiv der Pharmazie, 2008, Volume: 341, Issue:8

    The development of HKI-272 and EKB-569 for the treatment of cancer is described. These compounds function as irreversible inhibitors of some members of the ErbB family of receptor tyrosine kinases. In particular, they target epidermal growth factor receptor (EGFR, also known as ErbB-1) and human epidermal growth factor receptor-2 (HER2, also known as ErbB-2). Both, HKI-272 and EKB-569 are 4-anilino-3-cyano quinoline derivatives that contain a 4-(dimethylamino)crotonamide Michael-acceptor group at the 6-position. These compounds inhibit the function of the target enzymes by forming a covalent interaction with a conserved cysteine residue located in the kinase domains of these proteins. The potential advantages of using irreversible inhibitors for this purpose are discussed. We summarize the recent findings concerning some somatic mutations in EGFR and their relevance with respect to the irreversible inhibitors. In particular, we highlight the findings that these irreversible inhibitors retain activity against tumors that have acquired a resistance to the reversible binding inhibitors gefitinib and erlotinib. The promising interim clinical trial results for HKI-272 and EKB-569 in treating colon, lung, and breast cancers are summarized.

    Topics: Aminoquinolines; Aniline Compounds; Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Colonic Neoplasms; Drug Screening Assays, Antitumor; ErbB Receptors; Female; Humans; Lung Neoplasms; Neoplasms; Quinolines; Receptor, ErbB-2

2008

Other Studies

2 other study(ies) available for ekb-569 and Breast-Neoplasms

ArticleYear
Differential action of small molecule HER kinase inhibitors on receptor heterodimerization: therapeutic implications.
    International journal of cancer, 2012, Jul-01, Volume: 131, Issue:1

    Deregulation of ErbB/HER receptor tyrosine kinases has been linked to several types of cancer. The mechanism of activation of these receptors includes establishment of receptor dimers. Here, we have analyzed the action of different small molecule HER tyrosine kinase inhibitors (TKIs) on HER receptor dimerization. Breast cancer cell lines were treated with distinct TKIs and the formation of HER2-HER3 dimers was analyzed by coimmunoprecipitation and western blot or by Förster resonance energy transfer assays. Antibody-dependent cellular cytotoxicity was analyzed by measuring the release of lactate dehydrogenase and cell viability. Lapatinib and neratinib interfered with ligand-induced dimerization of HER receptors; while pelitinib, gefitinib, canertinib or erlotinib did not. Moreover, lapatinib and neratinib were able to disrupt previously formed receptor dimers. Structural analyses allowed the elucidation of the mechanism by which some TKIs prevent the formation of HER receptor dimers, while others do not. Experiments aimed at defining the functional importance of dimerization indicated that TKIs that impeded dimerization prevented down-regulation of HER2 receptors, and favored the action of trastuzumab. We postulate that TKIs that prevent dimerization and down-regulation of HER2 may augment the antitumoral action of trastuzumab, and this mechanism of action should be considered in the treatment of HER2 positive tumors which combine TKIs with antireceptor antibodies.

    Topics: Aminoquinolines; Aniline Compounds; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; ErbB Receptors; Erlotinib Hydrochloride; Female; Gefitinib; Humans; Lapatinib; Morpholines; Protein Kinase Inhibitors; Protein Multimerization; Quinazolines; Quinolines; Receptor, ErbB-2; Trastuzumab

2012
The PI3 kinase/mTOR blocker NVP-BEZ235 overrides resistance against irreversible ErbB inhibitors in breast cancer cells.
    Breast cancer research and treatment, 2011, Volume: 129, Issue:2

    Resistance against first and second generation (irreversible) ErbB inhibitors is an unsolved problem in clinical oncology. The purpose of this study was to examine the effects of the irreversible ErbB inhibitors pelitinib and canertinib on growth of breast and ovarian cancer cells. Although in vitro growth-inhibitory effects of both drugs exceeded by far the effects of all reversible ErbB blockers tested (lapatinib, erlotinib, and gefitinib), complete growth inhibition was usually not reached. To define the mechanism of resistance, we examined downstream signaling pathways in drug-exposed cells by Western blot analysis. Although ErbB phosphorylation was reduced by pelitinib and canertinib, activation of the AKT/mTOR pathway remained essentially unaltered in drug-resistant cells. Correspondingly, transfection of tumor cells with constitutively activated AKT was found to promote resistance against all ErbB inhibitors tested, whereas dominant negative AKT reinstalled sensitivity in drug-resistant cells. In a next step, we applied PI3K/AKT/mTOR blockers including the dual PI3K/mTOR kinase inhibitor NVP-BEZ235. These agents were found to cooperate with pelitinib and canertinib in producing in vitro growth inhibition in cancer cells resistant against ErbB-targeting drugs. In conclusion, our data show that ErbB drug-refractory activation of the PI3K/AKT/mTOR pathway plays a crucial role in resistance against classical and second-generation irreversible ErbB inhibitors, and NVP-BEZ235 can override this form of resistance against pelitinib and canertinib.

    Topics: Aminoquinolines; Aniline Compounds; Antineoplastic Agents; Blotting, Western; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Enzyme Activation; ErbB Receptors; Female; Humans; Imidazoles; Molecular Targeted Therapy; Morpholines; Ovarian Neoplasms; Phosphatidylinositol 3-Kinase; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Quinolines; Signal Transduction; Time Factors; TOR Serine-Threonine Kinases; Transfection

2011