egis-8332 has been researched along with Brain-Ischemia* in 3 studies
3 other study(ies) available for egis-8332 and Brain-Ischemia
Article | Year |
---|---|
Neuroprotective and anticonvulsant effects of EGIS-8332, a non-competitive AMPA receptor antagonist, in a range of animal models.
Blockade of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors is a good treatment option for a variety of central nervous system disorders. The present study evaluated the neuroprotective and anticonvulsant effects of EGIS-8332, a non-competitive AMPA receptor antagonist, as a potential drug candidate.. AMPA antagonist effects of EGIS-8332 were measured using patch-clamp techniques. Neuroprotective and anticonvulsant effects of EGIS-8332 were evaluated in various experimental models, relative to those of GYKI 53405.. EGIS-8332 inhibited AMPA currents in rat cerebellar Purkinje cells and inhibited the AMPA- and quisqualate-induced excitotoxicity in primary cultures of telencephalon neurons (IC(50)=5.1-9.0 microM), in vitro. Good anticonvulsant actions were obtained in maximal electroshock-, sound- and chemically-induced seizures (range of ED(50)=1.4-14.0 mg kg(-1) i.p.) in mice. Four days after transient global cerebral ischaemia, EGIS-8332 decreased neuronal loss in the hippocampal CA1 area in gerbils and rats. EGIS-8332 dose-dependently reduced cerebral infarct size after permanent middle cerebral artery occlusion in mice and rats (minimum effective dose=3 mg kg(-1) i.p.). Side effects of EGIS-8332 emerged much above its pharmacologically active doses. A tendency for better efficacy of GYKI 53405 than that of EGIS-8332 was observed in anticonvulsant tests that reached statistical significance in few cases, while the contrary was perceived in cerebral ischaemia tests.. EGIS-8332 seems suitable for further development for the treatment of epilepsy, ischaemia and stroke based on its efficacy in a variety of experimental disease models, and on its low side effect potential. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anticonvulsants; Benzodiazepines; Brain; Brain Ischemia; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Gerbillinae; Male; Membrane Potentials; Mice; Mice, Inbred DBA; Neurons; Neuroprotective Agents; Patch-Clamp Techniques; Purkinje Cells; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, AMPA; Seizures; Telencephalon; Time Factors | 2007 |
Therapeutic time window of neuroprotection by non-competitive AMPA antagonists in transient and permanent focal cerebral ischemia in rats.
EGIS-8332 and GYKI 53405 are selective, non-competitive AMPA (2-amino-3[3-hydroxy-5-methyl-4-isoxazolyl] propionic acid) antagonists that effectively protected against tissue injury caused by global and focal cerebral ischemia in laboratory animals. This study evaluated the therapeutic time window of neuroprotection by EGIS-8332 and GYKI 53405 in permanent and transient middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats. Infarct size was measured by TTC staining 48 h after permanent MCAO (electrocoagulation), and 24 h after reperfusion following a 1-h transient MCAO carried out using the intraluminal filament technique. Treatment with EGIS-8332 (10 mg/kg, i.p.) 60 or 120 min after permanent MCAO, decreased infarct size by 30% and 36%, respectively, and the effect of GYKI 53405 (10 mg/kg, i.p.) was similar (30% and 33%, respectively; p<0.01 all). Neither compound was effective if administered 180 or 240 min after permanent MCAO. Both EGIS-8332 and GYKI 53405 (20 mg/kg, i.p.) reduced the core and total (core plus penumbra) volumes of tissue injury in the whole brain and the cerebral cortex when administered 120 or 180 min after transient MCAO. The compounds did not alter tissue damage in the striatum. No neuroprotective effect was obtained at 240 min after transient MCAO. In conclusion, the therapeutic time window of neuroprotection by EGIS-8332 and GYKI 53405 was 2 h in permanent and 3 h in transient focal cerebral ischemia in rats. The results suggest that treatment with non-competitive AMPA antagonists can only be expected to produce a neuroprotective action in humans if administered shortly after the appearance of stroke symptoms. Topics: Animals; Benzodiazepines; Brain Ischemia; Cerebral Cortex; Drug Administration Schedule; Infarction, Middle Cerebral Artery; Male; Neostriatum; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Time Factors | 2006 |
The effects of AMPA receptor antagonists in models of stroke and neurodegeneration.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists have been shown to have neuroprotective effects in stroke models and although clinical trials with some agents are still ongoing, published results have not been favourable. We therefore wished to compare the effects of GYKI 52466, GYKI 53405, EGIS-8332 and EGIS-10608, non-competitive AMPA receptor antagonists with homophthalazine chemical structures, in standard animal stroke models with effects in a neurodegenerative model--excitoxicity in newborn mice. All compounds inhibited the S-AMPA-induced spreading depression in the chicken retina, in vitro, and were potent anticonvulsants against maximal electroshock in mice, in vivo. The AMPA receptor antagonists prevented domoate-induced cell death of motoneurons, in vitro, and reduced infarct size in a dose-dependent manner in the permanent middle cerebral artery occlusion model in mice, in vivo. In newborn mice (P5, histopathology at P10), local injection of the AMPA receptor agonist S-bromo-willardiine at day 5 after birth induced cortical damage and white matter damage, which was reduced in a dose-dependent manner by the AMPA receptor antagonists. EGIS 10608 was a very powerful receptor antagonist of white matter damage. In contrast, GYKI 52466 did not antagonize cortical and white matter damage induced by ibotenic acid. These models allow quantification of the effects of AMPA receptor antagonists in vitro and in vivo. Topics: Animals; Animals, Newborn; Anticonvulsants; Benzodiazepines; Brain; Brain Ischemia; Cell Survival; Chickens; Cortical Spreading Depression; Disease Models, Animal; Dose-Response Relationship, Drug; Electroshock; Excitatory Amino Acid Antagonists; Infarction, Middle Cerebral Artery; Male; Mice; Mice, Inbred Strains; Motor Neurons; Nerve Degeneration; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Retina; Seizures; Stroke | 2005 |