efatutazone has been researched along with Breast-Neoplasms* in 2 studies
2 other study(ies) available for efatutazone and Breast-Neoplasms
Article | Year |
---|---|
The PPARγ agonist efatutazone delays invasive progression and induces differentiation of ductal carcinoma in situ.
Ductal carcinoma in situ (DCIS) is a pre-invasive lesion of the breast considered a precursor of invasive ductal carcinoma. This study aimed to determine whether activated PPARγ acts as a tumor suppressor in human DCIS progression.. We utilized the high-affinity PPARγ agonist, efatutazone, to activate endogenous PPARγ in a well-defined model for the progression of basal (triple negative) DCIS, MCFDCIS cells, cultured under 2D and 3D conditions. We studied the effects of activated PPARγ on DCIS progression in MCFDCIS xenograft and C3(1)/Tag transgenic mice treated with 30 mg/kg of efatutazone.. In vitro, efatutazone did not alter the MCFDCIS cell proliferation but induced phenotypic and gene expression changes, indicating that activated PPARγ is able to differentiate MCFDCIS cells into more luminal and lactational-like cells. In addition, MCFDCIS tumorsphere formation in 3D was reduced by PPARγ activation. In vivo, efatutazone-treated MCFDCIS tumors exhibited fat deposition along with upregulation of PPARγ responsive genes in both epithelial and stromal compartments, suggesting features of milk-producing mammary epithelial cell differentiation. The efatutazone-treated lesions were less invasive with fewer CD44+/p63+ basal progenitor cells. PPARγ activation downregulated Akt phosphorylation in these tumors, although the ERK pathway remained unchanged. Similar trends in gene expression changes consistent with lactational and luminal cell differentiation were observed in the C3(1)/Tag mouse model after efatutazone treatment.. Our data suggest that activation of the PPARγ pathway differentiates DCIS lesions and may be a useful approach to delay DCIS progression. Topics: Animals; Breast Neoplasms; Carcinoma, Intraductal, Noninfiltrating; Cell Differentiation; Cell Line, Tumor; Cell Proliferation; Disease Progression; Female; Gene Expression Regulation, Neoplastic; Humans; Mice; Neoplasm Invasiveness; PPAR gamma; Thiazolidinediones; Xenograft Model Antitumor Assays | 2018 |
Biotinylation enhances the anticancer effects of 15d‑PGJ2 against breast cancer cells.
15-Deoxy-∆12,14-prostaglandin J2 (15d‑PGJ2) is a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that displays anticancer activity. Various studies have indicated that the effects of 15d‑PGJ2 are due to both PPARγ-dependent and -independent mechanisms. In the present study, we examined the effects of a biotinylated form of 15d‑PGJ2 (b‑15d‑PGJ2) on hormone-dependent MCF‑7 and triple‑negative MDA‑MB‑231 breast cancer cell lines. b‑15d‑PGJ2 inhibited cell proliferation more efficiently than 15d‑PGJ2 or the synthetic PPARγ agonist, efatutazone. b‑15d‑PGJ2 was also more potent than its non-biotinylated counterpart in inducing apoptosis. We then analyzed the mechanisms underlying this improved efficiency. It was found not to be the result of biotin receptor-mediated increased incorporation, since free biotin in the culture medium did not decrease the anti-proliferative activity of b‑15d‑PGJ2 in competition assays. Of note, b‑15d‑PGJ2 displayed an improved PPARγ agonist activity, as measured by transactivation experiments. Molecular docking analyses revealed a similar insertion of b‑15d‑PGJ2 and 15d‑PGJ2 into the ligand binding domain of PPARγ via a covalent bond with Cys285. Finally, PPARγ silencing markedly decreased the cleavage of the apoptotic markers, poly(ADP-ribose) polymerase 1 (PARP‑1) and caspase‑7, that usually occurs following b‑15d‑PGJ2 treatment. Taken together, our data indicate that biotinylation enhances the anti-proliferative and pro-apoptotic activity of 15d‑PGJ2, and that this effect is partly mediated via a PPARγ-dependent pathway. These results may aid in the development of novel therapeutic strategies for breast cancer treatment. Topics: Binding Sites; Biotinylation; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Cell Survival; Female; Gene Expression Regulation, Neoplastic; Humans; MCF-7 Cells; Models, Molecular; Molecular Docking Simulation; PPAR gamma; Prostaglandin D2; Thiazolidinediones | 2018 |