Page last updated: 2024-08-25

efaroxan and Disease Models, Animal

efaroxan has been researched along with Disease Models, Animal in 11 studies

Research

Studies (11)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (18.18)18.2507
2000's4 (36.36)29.6817
2010's4 (36.36)24.3611
2020's1 (9.09)2.80

Authors

AuthorsStudies
Braisted, J; Dranchak, P; Earnest, TW; Gu, X; Hoon, MA; Inglese, J; Oliphant, E; Solinski, HJ1
Abrams, RPM; Bachani, M; Balasubramanian, A; Brimacombe, K; Dorjsuren, D; Eastman, RT; Hall, MD; Jadhav, A; Lee, MH; Li, W; Malik, N; Nath, A; Padmanabhan, R; Simeonov, A; Steiner, JP; Teramoto, T; Yasgar, A; Zakharov, AV1
Hu, QK; Tan, X; Wang, WZ; Wang, YK; Wu, ZT; Yang, YH; Yu, Q; Yuan, WJ; Zhang, RW1
Hashimoto, M; Ono, H; Tanabe, M1
Chen, MF; Cheng, JT; Chou, MT; Chung, HH; Yang, TT1
Chen, MF; Cheng, JT; Chiu, NH; Chou, MT; Chung, HH; Mar, GY1
Dominiak, P; Häuser, W; Jungbluth, B; Raasch, W; Schäfer, U1
Ernsberger, P; Koletsky, RJ; Velliquette, RA1
Jesse, CR; Nogueira, CW; Savegnago, L1
Dreshaj, I; Ernsberger, P; Haxhiu, MA; Schäfer, SG1
Chopin, P; Colpaert, F; Marien, M; Martel, J1

Other Studies

11 other study(ies) available for efaroxan and Disease Models, Animal

ArticleYear
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
    Science translational medicine, 2019, 07-10, Volume: 11, Issue:500

    Topics: Animals; Behavior, Animal; Cell-Free System; Dermatitis, Contact; Disease Models, Animal; Ganglia, Spinal; Humans; Mice, Inbred C57BL; Mice, Knockout; Neurons; Pruritus; Receptors, Atrial Natriuretic Factor; Reproducibility of Results; Signal Transduction; Small Molecule Libraries

2019
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Centrally acting drug moxonidine decreases reactive oxygen species via inactivation of the phosphoinositide-3 kinase signaling in the rostral ventrolateral medulla in hypertensive rats.
    Journal of hypertension, 2016, Volume: 34, Issue:5

    Topics: Animals; Antihypertensive Agents; Benzofurans; Disease Models, Animal; Hypertension; Imidazoles; Male; Medulla Oblongata; Phosphatidylinositol 3-Kinases; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Reactive Oxygen Species; Signal Transduction

2016
Imidazoline I(1) receptor-mediated reduction of muscle rigidity in the reserpine-treated murine model of Parkinson's disease.
    European journal of pharmacology, 2008, Jul-28, Volume: 589, Issue:1-3

    Topics: Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Animals; Antiparkinson Agents; Benzazepines; Benzofurans; Clonidine; Disease Models, Animal; Dose-Response Relationship, Drug; Electromyography; Idazoxan; Imidazoles; Imidazoline Receptors; Injections, Intraperitoneal; Ligands; Male; Mice; Muscle Rigidity; Muscle, Skeletal; Parkinsonian Disorders; Reserpine; Time Factors; Yohimbine

2008
Improvement of hyperphagia by activation of cerebral I(1)-imidazoline receptors in streptozotocin-induced diabetic mice.
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 2012, Volume: 44, Issue:9

    Topics: Animals; Benzofurans; Cerebrum; Diabetes Mellitus, Type 1; Disease Models, Animal; Eating; Female; Humans; Hyperphagia; Hypothalamus; Imidazoles; Imidazoline Receptors; Male; Mice; Mice, Inbred BALB C; Neuropeptide Y; Oxazoles; Rilmenidine; Streptozocin

2012
Changes of imidazoline receptors in spontaneously hypertensive rats.
    International journal of experimental pathology, 2013, Volume: 94, Issue:1

    Topics: Agmatine; Animals; Antihypertensive Agents; Aorta, Thoracic; Benzofurans; Blood Pressure; Blotting, Western; Cyclic AMP-Dependent Protein Kinases; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Humans; Hypertension; Imidazoles; Imidazoline Receptors; KATP Channels; Male; Potassium Channel Blockers; Protein Kinase Inhibitors; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Up-Regulation; Vasodilation; Vasodilator Agents

2013
Modification of noradrenaline release in pithed spontaneously hypertensive rats by I1-binding sites in addition to alpha2-adrenoceptors.
    The Journal of pharmacology and experimental therapeutics, 2003, Volume: 304, Issue:3

    Topics: Adrenergic alpha-Antagonists; Agmatine; Animals; Antihypertensive Agents; Benzofurans; Binding Sites; Blood Pressure; Disease Models, Animal; Heart Rate; Idazoxan; Imidazoles; Male; Norepinephrine; Phenoxybenzamine; Rats; Rats, Inbred SHR; Receptors, Adrenergic, alpha-2

2003
The role of I(1)-imidazoline receptors and alpha(2)-adrenergic receptors in the modulation of glucose and lipid metabolism in the SHROB model of metabolic syndrome X.
    Annals of the New York Academy of Sciences, 2003, Volume: 1009

    Topics: Adrenergic alpha-Antagonists; Animals; Antihypertensive Agents; Benzofurans; Blood Pressure; Disease Models, Animal; Female; Glucagon; Glucose; Glucose Tolerance Test; Humans; Imidazoles; Imidazoline Receptors; Lipid Metabolism; Male; Metabolic Syndrome; Obesity; Oxazoles; Rats; Rats, Inbred SHR; Receptors, Adrenergic, alpha-2; Receptors, Drug; Rilmenidine; Yohimbine

2003
Caffeine and a selective adenosine A(2B) receptor antagonist but not imidazoline receptor antagonists modulate antinociception induced by diphenyl diselenide in mice.
    Neuroscience letters, 2008, May-09, Volume: 436, Issue:2

    Topics: Adrenergic alpha-Antagonists; Animals; Behavior, Animal; Benzene Derivatives; Benzofurans; Caffeine; Disease Models, Animal; Dose-Response Relationship, Drug; Hyperalgesia; Imidazoles; Injections, Intraperitoneal; Male; Mice; Neuroprotective Agents; Organoselenium Compounds; Pain Measurement; Phosphodiesterase Inhibitors; Pyrimidines; Triazoles; Xanthines

2008
Selective antihypertensive action of moxonidine is mediated mainly by I1-imidazoline receptors in the rostral ventrolateral medulla.
    Journal of cardiovascular pharmacology, 1994, Volume: 24 Suppl 1

    Topics: Adrenergic alpha-Antagonists; Affinity Labels; Animals; Antihypertensive Agents; Benzazepines; Benzofurans; Binding, Competitive; Blood Gas Analysis; Blood Pressure; Blood Pressure Determination; Cattle; Clonidine; Disease Models, Animal; Heart Rate; Hypertension; Imidazoles; Imidazoline Receptors; In Vitro Techniques; Medulla Oblongata; Microinjections; Radioligand Assay; Rats; Rats, Inbred SHR; Receptors, Drug

1994
Neuroprotective effects of the alpha2-adrenoceptor antagonists, (+)-efaroxan and (+/-)-idazoxan, against quinolinic acid-induced lesions of the rat striatum.
    Experimental neurology, 1998, Volume: 154, Issue:2

    Topics: Adrenergic alpha-Antagonists; Animals; Apomorphine; Behavior, Animal; Benzofurans; Choline O-Acetyltransferase; Corpus Striatum; Disease Models, Animal; Dopamine Agonists; Enzyme Activation; Huntington Disease; Idazoxan; Imidazoles; Male; Nerve Degeneration; Neuroprotective Agents; Neurotoxins; Quinolinic Acid; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic, alpha-2

1998