echinacoside and Seizures

echinacoside has been researched along with Seizures* in 1 studies

Other Studies

1 other study(ies) available for echinacoside and Seizures

ArticleYear
Echinacoside, an Active Constituent of Cistanche Herba, Exerts a Neuroprotective Effect in a Kainic Acid Rat Model by Inhibiting Inflammatory Processes and Activating the Akt/GSK3β Pathway.
    Biological & pharmaceutical bulletin, 2018, Nov-01, Volume: 41, Issue:11

    Echinacoside is a major compound of Cistanche Herb and has glutamate release-inhibiting activity in the brain. Given the involvement of excitotoxicity caused by massive glutamate in the pathophysiology of epilepsy, we explored the antiepileptic effect of echinacoside on kainic acid-induced seizures in rats. The rats were intraperitoneally administrated echinacoside for 30 min prior to intraperitoneal injection with kainic acid. The results showed that kainic acid induced seizure-like behavioral patterns, increased glutamate concentrations, caused neuronal loss and microglial activation, and stimulated proinflammatory cytokine gene expression in the hippocampus. These kainic acid-induced alternations were found to be attenuated by echinacoside pretreatment. Furthermore, decreased Akt and glycogen synthase kinase 3β (GSK3β) phosphorylation as well as Bcl-2 expression in the hippocampus was reversed by the echinacoside pretreatment. These results demonstrate that echinacoside exert its antiepileptic and neuroprotective actions in a kainic acid rat model through suppressing inflammatory response and activating the Akt/GSK3β signaling. Therefore, the present study suggests that echinacoside is the potentially useful in the prevention of epilepsy.

    Topics: Animals; Brain; Cistanche; Cytokines; Disease Models, Animal; Epilepsy; Glutamic Acid; Glycogen Synthase Kinase 3 beta; Glycosides; Inflammation; Kainic Acid; Male; Microglia; Neuroprotective Agents; Neurotoxicity Syndromes; Phosphorylation; Phytotherapy; Plant Extracts; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Rats, Sprague-Dawley; Seizures; Signal Transduction

2018