ecdysterone has been researched along with Xeroderma-Pigmentosum* in 2 studies
2 other study(ies) available for ecdysterone and Xeroderma-Pigmentosum
Article | Year |
---|---|
Overproduction of DNA polymerase eta does not raise the spontaneous mutation rate in diploid human fibroblasts.
Telomerase-immortalized lines of diploid xeroderma pigmentosum variant (XP-V) fibroblasts (XP115LO and XP4BE) were complemented for constitutive or regulated expression of wild-type human DNA polymerase eta (hpol eta). The ectopic gene was expressed from a retroviral LTR at a population average of 34- to 59-fold above the endogenous (mutated) mRNA and high levels of hpol eta were detected by immunoblotting. The POLH cDNA was also cloned downstream from an ecdysone-regulated promoter and transduced into the same recipient cells. Abundance of the wild-type mRNA increased approximately 10-fold by addition of ponasterone to the culture medium. Complemented cell lines acquired normal resistance to the cytotoxic effects of UVC, even in the presence of 1mM caffeine. They also tolerated higher levels of UVC-induced template lesions during nascent DNA elongation when compared to normal fibroblasts (NHF). UVC-induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus were measured in the XP115LO+XPV cell line overproducing hpol eta constitutively (E. Bassett, N.M. King, M.F. Bryant, S. Hector, L. Pendyala, S.G. Chaney, M. Cordeiro-Stone, The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts, Cancer Res. 64 (2004) 6469-6475). Induced mutation frequencies were significantly reduced, even below those observed in NHF; however, the average mutation frequency in untreated cultures was about three-fold higher than in the isogenic vector-control cell line. In this study, spontaneous HPRT mutation frequencies were measured at regular intervals, as isogenic fibroblasts either lacking or overproducing hpol eta were expanded for 100 population doublings. The mutation rates estimated from these results were not significantly increased in XP115LO cells expressing abnormal levels of hpol eta, relative to the cells lacking this specialized polymerase. These findings suggest that diploid human fibroblasts with normal DNA repair capacities and intact checkpoints are well protected against the potential mutagenic outcome of overproducing hpol eta, while still benefiting from accurate translesion synthesis of UV-induced pyrimidine dimers. Topics: Blotting, Western; Caffeine; Cell Line, Transformed; Diploidy; DNA Repair; DNA-Directed DNA Polymerase; Ecdysterone; Fibroblasts; Frameshift Mutation; Gene Dosage; Genetic Complementation Test; Genetic Variation; Humans; Hypoxanthine Phosphoribosyltransferase; Kinetics; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Ultraviolet Rays; Xeroderma Pigmentosum | 2005 |
Low amounts of the DNA repair XPA protein are sufficient to recover UV-resistance.
DNA integrity is threatened by the damaging effects of physical and chemical agents that can affect its function. Nucleotide excision repair (NER) is one of the most known and flexible mechanisms of DNA repair. This mechanism can recognize and remove damages causing DNA double-helix distortion, including the cyclobutane pyrimidine dimers (CPDs) and the pyrimidine-pyrimidone (6-4) photoproducts, promoted by ultraviolet light (UV). The human syndrome xeroderma pigmentosum (XP) is clinically characterized chiefly by the early onset of severe photosensitivity of the exposed regions of the skin, a very high incidence of skin cancers and frequent neurological abnormalities. The xpa gene seems to be involved during UV damage recognition, in both global genome repair (GGR) and transcription-coupled repair (TCR). The modulation of xpa expression may modify the DNA repair rate in the cell genome, providing a valuable contribution to an understanding of the NER process. The controlled expression of the cDNA xpa in XP12RO deficient cells was achieved through the transfection of a muristerone-A inducible vector, pINXA. The INXA15 clone shows good induction of the XPA protein and total complementation of XP12RO cell deficiency. Overexpression of this protein resulted in UV cell survival comparable to normal control human cells. Moreover, low expression of the XPA protein in these cells is sufficient for total complementation in cellular UV sensitivity and DNA repair activity. These data demonstrate that XPA protein concentration is not a limiting factor for DNA repair. Topics: Cell Line; Cell Survival; Cells, Cultured; Connexins; DNA; DNA Repair; DNA Replication; DNA-Binding Proteins; Ecdysterone; Flow Cytometry; Genetic Vectors; Genome; HeLa Cells; Humans; Kinetics; Transcription, Genetic; Transfection; Ultraviolet Rays; Xeroderma Pigmentosum; Xeroderma Pigmentosum Group A Protein | 2002 |