ecdysterone has been researched along with Breast-Neoplasms* in 9 studies
9 other study(ies) available for ecdysterone and Breast-Neoplasms
Article | Year |
---|---|
Proapoptotic and proautophagic activity of 20-hydroxyecdysone in breast cancer cells in vitro.
The present study was designed to identify the biological activity of three ecdysones, i.e., 20-hydroxyecdysone (20-HE), ajugasterone C, and polypodine B isolated from Serratula coronata. The main objective was to investigate the molecular mechanism of the biological activity of those compounds and to assess their impact on breast cancer cell survival and cell cycle. Cell lines were selected according to their hormone receptor status since this factor is perceived as a crucial one in the cancer prognosis as well as cancer cell response to therapy. Consequently, MCF7 (ER/PR+, HER2-), T-47D (ER/PR+, HER2-/+), and MDA-MB-231 (ER/PR-, HER2-) were enrolled in the study. Additionally, a non-tumorigenic, MCF10A cells were selected to verify any potential specificity to cancer cells. Interestingly, none of the studied compounds affected the viability of MCF10A cells while cancer cells were altered, albeit in different ways. Polypodine B did not affect the viability or cell cycle distribution of studied breast cancer cells. By contrast, 20-HE and ajugasterone C significantly inhibited the viability of triple-negative cell line, MDA-MB-231. Interestingly, 20-HE revealed proapoptotic activity in MDA-MB-231 and T-47D cells that was manifested by alterations in PARP, Bax, and Bcl-2 levels as well as caspase-3 activation. Moreover, 20-HE induced autophagy that was mediated by modification of autophagy-associated proteins, i.e., LC3, p62, and mTOR, but only in MDA-MB-231 cells. This study is the first to report diverse biological activity of phytoecdysones in different breast cancer cells, that suggests association with molecular characteristics including receptor status but also other biological properties and genetic markers. Topics: Antineoplastic Agents; Apoptosis; Autophagy; Breast Neoplasms; Cell Line, Tumor; Drug Screening Assays, Antitumor; Ecdysterone; Humans | 2021 |
Insulin-like growth factor binding protein-3 induces G1 cell cycle arrest with inhibition of cyclin-dependent kinase 2 and 4 in MCF-7 human breast cancer cells.
Insulin-like growth factor binding protein (IGFBP)-3 has been shown to potently inhibit proliferation of various cell types in an insulin-like growth factor (IGF)-independent manner. We have previously shown that IGFBP-3 induces apoptosis in an IGF-independent manner through the activation of caspases involved in a death receptor-mediated pathway in MCF-7 human breast cancer cells. In the present study, we present further evidence that IGFBP-3 inhibits cell proliferation through the induction of cell cycle arrest in the same cell line. Induction of IGFBP-3 in MCF-7 cells inhibited cell proliferation whereas presence of small interfering RNA against IGFBP-3 abolished cell inhibitory effect of IGFBP-3, suggesting that the observed growth inhibition is specific. Flow cytometry analysis showed that induced expression of IGFBP-3 led to an arrest of the cell cycle in G1-S phase. Western immunoblot analysis showed a significant decrease in the levels of the cell cycle-regulated proteins such as cyclin D1, cyclin D3, cyclin E, cyclin A, cyclin-dependent kinase (CDK) 2, CDK4, retinoblastoma protein (pRB), and phosph-pRB, suggesting a possible mechanism for cell cycle arrest by IGFBP-3. Northern blot analysis and real-time quantitative PCR demonstrated a significant decrease in gene expression of cyclin D1. Additional phosphorylation assay showed that IGFBP-3 decreased the phosphorylation activity of CDK2 and CDK4. These results show that cellular production of IGFBP-3 leads to G1 cell cycle arrest with inhibition of CDK2 and CDK4. Taken together, IGFBP-3 exerts its growth inhibitory action through not only induction of apoptosis but also the G1 cell cycle arrest in human breast cancer cells. Topics: Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Cyclin D1; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinase Inhibitor Proteins; Ecdysterone; Female; G1 Phase; Gene Expression Regulation, Neoplastic; Humans; Insulin-Like Growth Factor Binding Protein 3; Insulin-Like Growth Factor Binding Proteins; RNA, Messenger | 2010 |
3,3'-diindolylmethane induction of p75NTR-dependent cell death via the p38 mitogen-activated protein kinase pathway in prostate cancer cells.
The p75(NTR) functions as a tumor suppressor in prostate epithelial cells, where its expression declines with progression to malignant cancer. Previously, we showed that treatment with the nonsteroidal anti-inflammatory drug, indomethacin, induced p75(NTR) expression in the T24 cancer cell line leading to p75(NTR)-mediated decreased survival. Utilizing the indole moiety of indomethacin as a pharmacophore, we identified in rank-order with least efficacy, ketorolac, etodolac, indomethacin, 5-methylindole-3-acetic acid, indole-3-carbinol, and 3,3'-diindolylmethane (DIM) exhibiting greatest activity for induction of p75(NTR) levels and inhibition of cell survival. Prostate (PC-3, DU-145) and bladder (T24) cancer cells were more sensitive to DIM induction of p75(NTR)-associated loss of survival than breast (MCF7) and fibroblast (3T3) cells. Transfection of the PC-3 prostate cell line with a dominant-negative form of p75(NTR) before DIM treatment significantly rescued cell survival demonstrating a cause and effect relationship between DIM induction of p75(NTR) levels and inhibition of survival. Furthermore, siRNA knockdown of the p38 mitogen-activated protein kinase (MAPK) protein prevented induction of p75(NTR) by DIM in the PC-3 prostate cell line. DIM treatment induced phosphorylation of p38 MAPK as early as within 1 minute. Collectively, we identify DIM as an indole capable of inducing p75(NTR)-dependent apoptosis via the p38 MAPK pathway in prostate cancer cells. Topics: 3T3 Cells; Adenocarcinoma; Animals; Anti-Inflammatory Agents, Non-Steroidal; Anticarcinogenic Agents; Apoptosis; Brassicaceae; Breast Neoplasms; Cell Line, Tumor; Ecdysterone; Female; Humans; Indoles; Male; Mice; Neoplasm Proteins; Nerve Tissue Proteins; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Prostatic Neoplasms; Protein Processing, Post-Translational; Receptors, Nerve Growth Factor; Recombinant Fusion Proteins; RNA, Small Interfering; Signal Transduction; Transfection | 2009 |
DBC2 resistance is achieved by enhancing 26S proteasome-mediated protein degradation.
Tumor suppressor gene DBC2 stops growth of tumor cells through regulation of CCND1. Interference of CCND1 down-regulation prevented growth arrest caused by DBC2 [T. Yoshihara, D. Collado, M. Hamaguchi, Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function, Biochemical and biophysical research communications 358 (2007) 1076-1079]. It was also noted that DBC2 resistant cells eventually arose after repeated induction of DBC2 with muristerone A treatment [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. In order to elucidate the mechanism of resistance acquisition, we analyzed DBC2 sensitive and resistant cells derived from the same progenitor cells (T-47D). We discovered that DBC2 protein was abundantly expressed in the sensitive cells when DBC2 was induced. In contrast, it was undetectable by western blot analysis in the resistant cells. We confirmed that the inducible gene expression system was responsive in both cells by detecting induced GFP. Additionally, inhibition of 26S proteasome by MG132 revealed production of DBC2 protein in the resistant cells. These findings indicate that the resistant T-47D cells survive DBC2 induction by rapid destruction of DBC2 through 26S proteasome-mediated protein degradation. Topics: Blotting, Western; Breast Neoplasms; Cell Line; Cysteine Proteinase Inhibitors; Drug Resistance, Neoplasm; Ecdysterone; Female; Gene Expression Regulation, Neoplastic; Gene Transfer Techniques; GTP-Binding Proteins; Humans; Leupeptins; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Transgenes; Tumor Suppressor Proteins | 2007 |
Loss of Nrdp1 enhances ErbB2/ErbB3-dependent breast tumor cell growth.
Dysregulation of ErbB receptor tyrosine kinases is thought to promote mammary tumor progression by stimulating tumor cell growth and invasion. Overexpression and aberrant activation of ErbB2/HER2 confer aggressive and malignant characteristics to breast cancer cells, and patients displaying ErbB2-amplified breast cancer face a worsened prognosis. Recent studies have established that ErbB2 and ErbB3 are commonly co-overexpressed in breast tumor cell lines and in patient samples. ErbB2 heterodimerizes with and activates the ErbB3 receptor, and the two receptors synergize in promoting growth factor-induced cell proliferation, transformation, and invasiveness. Our previous studies have shown that the neuregulin receptor degradation protein-1 (Nrdp1) E3 ubiquitin ligase specifically suppresses cellular ErbB3 levels by marking the receptor for proteolytic degradation. Here, we show that overexpression of Nrdp1 in human breast cancer cells results in the suppression of ErbB3 levels, accompanied by the inhibition of cell growth and motility and the attenuation of signal transduction pathways. In contrast, either Nrdp1 knockdown or the overexpression of a dominant-negative form enhances ErbB3 levels and cellular proliferation. Additionally, Nrdp1 expression levels inversely correlate with ErbB3 levels in primary human breast cancer tissue and in a mouse model of ErbB2 mammary tumorigenesis. Our observations suggest that Nrdp1-mediated ErbB3 degradation suppresses cellular growth and motility, and that Nrdp1 loss in breast tumors may promote tumor progression by augmenting ErbB2/ErbB3 signaling. Topics: Animals; Blotting, Western; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Ecdysterone; Extracellular Signal-Regulated MAP Kinases; Female; Genetic Vectors; Humans; Mammary Neoplasms, Animal; Mice; Mice, Transgenic; Nerve Tissue Proteins; Neuregulin-1; Phosphatidylinositol 3-Kinases; Receptor, ErbB-2; Receptor, ErbB-3; Retroviridae; RNA, Small Interfering; Signal Transduction; Transfection; Ubiquitin-Protein Ligases | 2006 |
Development of an inducible suicide gene system based on human caspase 8.
Suicide gene-therapy strategies are promising approaches in treating various diseases such as cancers, atherosclerosis, and graft-versus-host-disease. Here, we describe the development of a new effector gene based on inducing functional caspase 8, the initiator caspase in the death-receptor pathway. We constructed vectors encoding a constitutively active form of human caspase 8 (CC8), and demonstrated the efficient killing of a variety of cell types in transfection and lentivirus-transduction assays. We then analyzed the ability to control the apoptotic activity of a caspase 8-derived construct through the ARIADtrade mark homodimerization system (FKC8), a system shown to be extremely effective in several cellular models upon retroviral and lentiviral gene transfer. Similarly, two transcription-regulation systems, muristerone-regulated and Tet-On, were tested to control the expression of CC8. The homodimerization-regulated system FKC8 was shown to be the most efficient system with low background activity in noninduced conditions. In the presence of a dimerizer, it was as active as the activated Tet-On system. From our data, we conclude that the dimerizer-dependent human caspase 8 represents a highly inducible and very powerful system to eradicate transduced cell populations. In addition to its application in experimental gene therapy, this variant may be highly useful for mechanistic research related to apoptosis. Topics: Animals; Apoptosis; Breast Neoplasms; Caspase 8; Caspases; Cell Line; Dimerization; Ecdysterone; Gene Expression Regulation; Genes, Transgenic, Suicide; Genetic Therapy; Genetic Vectors; Humans; Lentivirus; Mice; Plasmids; Retroviridae; Tetracycline; Transfection | 2005 |
Inducible expression of a degradation-resistant form of p27Kip1 causes growth arrest and apoptosis in breast cancer cells.
The cyclin-dependent kinase (CDK) inhibitor p27(Kip1) (p27) is an important regulator of cell cycle progression controlling the transition from G to S-phase. Low p27 levels or accelerated p27 degradation correlate with excessive cell proliferation and poor prognosis in several forms of cancer. Phosphorylation of p27 at Thr187 by cyclin E-CDK2 is required to initiate the ubiquitination-proteasomal degradation of p27. Protecting p27 from ubiquitin-mediated proteasomal degradation may increase its potential in cancer gene therapy. Here we constructed a non-phosphorylatable, proteolysis-resistant p27 mutant containing a Thr187-to-Ala substitution (T187A) which is not degraded by ubiquitin-mediated proteasome pathway, and compared its effects on cell growth, cell-cycle control, and apoptosis with those of wild-type p27. In muristerone A-inducible cell lines overexpressing wild-type or mutant p27, the p27 mutant was more resistant to proteolysis in vivo and more potent in inducing cell-cycle arrest and other growth-inhibitory effects such as apoptosis. Transduction of p27(T187A) in breast cancer cells with a doxycycline-regulated adenovirus led to greater inhibition of proliferation, more extensive apoptosis, with a markedly reduced protein levels of cyclin E and increased accumulation of cyclin D1, compared with wild-type p27. These findings support the potential effectiveness of a degradation-resistant form of p27 in breast cancer gene therapy. Topics: Adenoviridae; Alanine; Annexin A5; Apoptosis; Biomarkers, Tumor; Breast Neoplasms; CDC2-CDC28 Kinases; Cell Cycle; Cell Cycle Proteins; Cell Line; Cell Line, Tumor; Cell Proliferation; Cyclin D1; Cyclin E; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinase Inhibitor p27; Doxycycline; Ecdysterone; Humans; Immunoblotting; Mutagenesis, Site-Directed; Mutation; Phosphorylation; Prognosis; Proteasome Endopeptidase Complex; Proteins; S Phase; Threonine; Time Factors; Tumor Suppressor Proteins; Ubiquitin | 2005 |
Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation.
The cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPAR gamma induces hepatic steatosis, and liganded PPAR gamma promotes adipocyte differentiation. Herein, cyclin D1 inhibited ligand-induced PPAR gamma function, transactivation, expression, and promoter activity. PPAR gamma transactivation induced by the ligand BRL49653 was inhibited by cyclin D1 through a pRB- and cdk-independent mechanism, requiring a region predicted to form an helix-loop-helix (HLH) structure. The cyclin D1 HLH region was also required for repression of the PPAR gamma ligand-binding domain linked to a heterologous DNA binding domain. Adipocyte differentiation by PPAR gamma-specific ligands (BRL49653, troglitazone) was enhanced in cyclin D1(-/-) fibroblasts and reversed by retroviral expression of cyclin D1. Homozygous deletion of the cyclin D1 gene, enhanced expression by PPAR gamma ligands of PPAR gamma and PPAR gamma-responsive genes, and cyclin D1(-/-) mice exhibit hepatic steatosis. Finally, reduction of cyclin D1 abundance in vivo using ponasterone-inducible cyclin D1 antisense transgenic mice, increased expression of PPAR gamma in vivo. The inhibition of PPAR gamma function by cyclin D1 is a new mechanism of signal transduction cross talk between PPAR gamma ligands and mitogenic signals that induce cyclin D1. Topics: 3T3 Cells; Animals; Breast; Breast Neoplasms; CCAAT-Enhancer-Binding Protein-alpha; CCAAT-Enhancer-Binding Protein-beta; Cyclin D1; Ecdysterone; Epithelial Cells; Fatty Liver; Female; Gene Expression Regulation; Humans; Mice; Mice, Mutant Strains; Mice, Transgenic; Models, Molecular; Mutation; Protein Conformation; Receptors, Cytoplasmic and Nuclear; Reference Values; Repressor Proteins; Rosiglitazone; Thiazoles; Thiazolidinediones; Transcription Factors; Transcriptional Activation | 2003 |
BRCA1 transcriptionally regulates genes involved in breast tumorigenesis.
Loss of function of BRCA1 caused by inherited mutation and tissue-specific somatic mutation leads to breast and ovarian cancer. Nearly all BRCA1 germ-line mutations involve truncation or loss of the C-terminal BRCT transcriptional activation domain, suggesting that transcriptional regulation is a critical function of the wild-type gene. The purpose of this project was to determine whether there is a link between the role of BRCA1 in transcriptional regulation and its role in tumor suppression. We developed a cell line (in which BRCA1 can be induced) and used microarray analysis to compare transcription profiles of epithelial cells with low endogenous levels of BRCA1 vs. transcription profiles of cells with 2-4-fold higher induced levels of expression of BRCA1. At these levels of expression, BRCA1 did not induce apoptosis. Undirected cluster analysis of six paired experiments revealed 373 genes, the expression of which was altered significantly and consistently by BRCA1 induction. Expression of 62 genes was altered more than 2-fold. BRCA1-regulated genes associated with breast tumorigenesis included the estrogen-responsive genes MYC and cyclin D1, which are overexpressed in many breast tumors; STAT1 and JAK1, key components of the cytokine signal transduction pathway; the extracellular matrix protein laminin 3A; ID4, an inhibitor of DNA-binding transcriptional activators, which in turn negatively regulates BRCA1 expression; and the prohormone stanniocalcin, expression of which is lost in breast tumor cells. Coordinated expression of BRCA1 with ID4 and with stanniocalcin was confirmed in primary breast and ovarian tumors. Topics: BRCA1 Protein; Breast; Breast Neoplasms; Cell Division; Cell Line; Cell Transformation, Neoplastic; Cloning, Molecular; DNA, Complementary; Ecdysterone; Epithelial Cells; Female; Gene Expression Regulation; Gene Expression Regulation, Neoplastic; Genes, BRCA1; Humans; Kidney; Kinetics; Mutation; Ovarian Neoplasms; Transfection | 2002 |