ecallantide has been researched along with Thrombosis* in 18 studies
5 review(s) available for ecallantide and Thrombosis
Article | Year |
---|---|
Role of Factor XIa and Plasma Kallikrein in Arterial and Venous Thrombosis.
Cardiovascular disease, including stroke, myocardial infarction, and venous thromboembolism, is one of the leading causes of morbidity and mortality worldwide. Excessive coagulation may cause vascular occlusion in arteries and veins eventually leading to thrombotic diseases. Studies in recent years suggest that coagulation factors are involved in these pathological mechanisms. Factors XIa (FXIa), XIIa (FXIIa), and plasma kallikrein (PKa) of the contact system of coagulation appear to contribute to thrombosis while playing a limited role in hemostasis. Contact activation is initiated upon autoactivation of FXII on negatively charged surfaces. FXIIa activates plasma prekallikrein (PK) to PKa, which in turn activates FXII and initiates the kallikrein-kinin pathway. FXI is also activated by FXIIa, leading to activation of FIX and finally to thrombin formation, which in turn activates FXI in an amplification loop. Animal studies have shown that arterial and venous thrombosis can be reduced by the inhibition of FXI(a) or PKa. Furthermore, data from human studies suggest that these enzymes may be valuable targets to reduce thrombosis risk. In this review, we discuss the structure and function of FXI(a) and PK(a), their involvement in the development of venous and arterial thrombosis in animal models and human studies, and current therapeutic strategies. Topics: Animals; Arterial Occlusive Diseases; Blood Coagulation; Blood Coagulation Disorders; Blood Coagulation Factors; Disease Models, Animal; Enzyme Activation; Factor Xa Inhibitors; Factor XI Deficiency; Factor XIa; Humans; Mice; Mice, Knockout; Plasma Kallikrein; Prekallikrein; Protein Processing, Post-Translational; Species Specificity; Thrombophilia; Thrombosis; Venous Thrombosis | 2020 |
The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities.
The contact activation system (CAS) and kallikrein/kinin system (KKS) are older recognized biochemical pathways that include several proteins that skirt the fringes of the blood coagulation, fibrinolytic, complement and renin-angiotensin fields. These proteins initially were proposed as part of the hemostatic pathways because their deficiencies are associated with prolonged clinical assays. However, the absence of bleeding states with deficiencies of factor XII (FXII), prekallikrein (PK) and high-molecular-weight kininogen indicates that the CAS and KKS do not contribute to hemostasis. Since the discovery of the Hageman factor 60 years ago much has been learned about the biochemistry, cell biology and animal physiology of these proteins. The CAS is a pathophysiologic surface defense mechanism against foreign proteins, organisms and artificial materials. The KKS is an inflammatory response mechanism. Targeting their activation through FXIIa or plasma kallikrein inhibition when blood interacts with the artificial surfaces of modern interventional medicine or in acute attacks of hereditary angioedema restores vascular homeostasis. FXII/FXIIa and products that arise with PK deficiency also offer novel ways to reduce arterial and venous thrombosis without an effect on hemostasis. In summary, there is revived interest in the CAS and KKS due to better understanding of their activities. The new appreciation of these systems will lead to several new therapies for a variety of medical disorders. Topics: Animals; Blood Coagulation; Blood Coagulation Disorders; Bradykinin; Factor XII; Factor XIIa; Hemostasis; Homeostasis; Humans; Inflammation; Kallikrein-Kinin System; Kininogen, High-Molecular-Weight; Mice; Plasma Kallikrein; Prekallikrein; Receptors, Bradykinin; Thrombosis | 2016 |
Role of plasma kallikrein in diabetes and metabolism.
Plasma kallikrein (PK) is a serine protease generated from plasma prekallikrein, an abundant circulating zymogen expressed by the Klkb1 gene. The physiological actions of PK have been primarily attributed to its production of bradykinin and activation of coagulation factor XII, which promotes inflammation and the intrinsic coagulation pathway. Recent genetic, molecular, and pharmacological studies of PK have provided further insight into its role in physiology and disease. Genetic analyses have revealed common Klkb1 variants that are association with blood metabolite levels, hypertension, and coagulation. Characterisation of animal models with Klkb1 deficiency and PK inhibition have demonstrated effects on inflammation, vascular function, blood pressure regulation, thrombosis, haemostasis, and metabolism. These reports have also identified a host of PK substrates and interactions, which suggest an expanded physiological role for this protease beyond the bradykinin system and coagulation. The review summarises the mechanisms that contribute to PK activation and its emerging role in diabetes and metabolism. Topics: Adipogenesis; Animals; Blood Coagulation; Blood Pressure; Bradykinin; Diabetes Mellitus; Factor XII; Gene Expression Regulation; Genetic Variation; Glucose; Hemostasis; Humans; Hypertension; Inflammation; Mice; Plasma Kallikrein; Prekallikrein; Thrombosis | 2013 |
Plasma kallikrein: the bradykinin-producing enzyme.
Plasma prekallikrein is the liver-derived precursor of the trypsin-like serine protease plasma kallikrein (PK) and circulates in plasma bound to high molecular weight kininogen. The zymogen is converted to PK by activated factor XII. PK drives multiple proteolytic reaction cascades in the cardiovascular system such as the intrinsic pathway of coagulation, the kallikrein-kinin system, the fibrinolytic system, the renin-angiotensin system and the alternative complement pathway. Here, we review the biochemistry and cell biology of PK and focus on recent in vivo studies that have established important functions of the protease in procoagulant and proinflammatory disease states. Targeting PK offers novel strategies not previously appreciated to interfere with thrombosis and vascular inflammation in a broad variety of diseases. Topics: Animals; Aprotinin; Blood Coagulation; Bradykinin; Cerebral Hemorrhage; Complement System Proteins; Cysteine; Diabetic Retinopathy; Disulfides; Factor XIIa; Fibrinolysis; Hemostasis; Humans; Inflammation; Kallikrein-Kinin System; Kallikreins; Kinins; Mice; Oligonucleotides, Antisense; Peptides; Plasma Kallikrein; Protein Structure, Tertiary; Proteolysis; Renin-Angiotensin System; Signal Transduction; Thrombosis; Trypsin | 2013 |
The plasma kallikrein-kinin system: its evolution from contact activation.
The plasma kallikrein-kinin system consists of the proteins factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen. It was first recognized as a surface-activated coagulation system that is activated when blood or plasma interacts with artificial surfaces. Although surface-activated contact activation occurs in vivo in the case of tissue destruction or a developing thrombus, the physiologic basis for the activation and function of this system has not been delineated. New investigations indicate that there is a proteolytic pathway on cells for PK activation independent of FXII. This pathway for PK with subsequent FXII activation indicates physiologic activities. These activities include blood pressure regulation and modulation of thrombosis risk independently of hemostasis. Furthermore, they include regulation of endothelial cell proliferation, angiogenesis and apoptosis through a cellular-based, outside-in signaling system. The present characterizations of this system, which incorrectly had been thought to initiate coagulation, represent an evolution of understanding in this field. Topics: Animals; Blood Coagulation; Blood Pressure; Bradykinin; Cell Proliferation; Endothelial Cells; Factor XII; Factor XIIa; Humans; Kininogen, High-Molecular-Weight; Neovascularization, Physiologic; Plasma Kallikrein; Prekallikrein; Regional Blood Flow; Risk Assessment; Signal Transduction; Thrombosis | 2007 |
13 other study(ies) available for ecallantide and Thrombosis
Article | Year |
---|---|
Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system.
Post-acute sequelae of COVID-19 (PASC), also now known as long COVID, has become a major global health and economic burden. Previously, we provided evidence that there is a significant insoluble fibrin amyloid microclot load in the circulation of individuals with long COVID, and that these microclots entrap a substantial number of inflammatory molecules, including those that might prevent clot breakdown. Scientifically, the most challenging aspect of this debilitating condition is that traditional pathology tests such as a serum CRP (C-reactive protein) may not show any significant abnormal inflammatory markers, albeit these tests measure only the soluble inflammatory molecules. Elevated, or abnormal soluble biomarkers such as IL-6, D-Dimer or fibrinogen indicate an increased risk for thrombosis or a host immune response in COVID-19. The absence of biomarkers in standard pathology tests, result in a significant amount of confusion for patients and clinicians, as patients are extremely sick or even bed-ridden but with no regular identifiable reason for their disease. Biomarkers that are currently available cannot detect the molecules present in the microclots we identified and are therefore unable to confirm their presence or the mechanisms that drive their formation.. Here we analysed the protein content of double-digested microclots of 99 long COVID patients and 29 healthy controls. The patients suffering from long COVID reported their symptoms through a questionnaire completed by themselves or their attending physician.. Our long COVID cohort's symptoms were found to be in line with global findings, where the most prevalent symptoms were constant fatigue (74%,) cognitive impairment (71%) and depression and anxiety (30%). Our most noteworthy findings were a reduced level of plasma Kallikrein compared to our controls, an increased level of platelet factor 4 (PF4) von Willebrand factor (VWF), and a marginally increased level of α-2 antiplasmin (α-2-AP). We also found a significant presence of antibodies entrapped inside these microclots.. Our results confirm the presence of pro-inflammatory molecules that may also contribute to a failed fibrinolysis phenomenon, which could possibly explain why individuals with long COVID suffer from chronic fatigue, dyspnoea, or cognitive impairment. In addition, significant platelet hyperactivation was noted. Hyperactivation will result in the granular content of platelets being shed into the circulation, including PF4. Overall, our results provide further evidence of both a failed fibrinolytic system in long COVID/PASC and the entrapment of many proteins whose presence might otherwise go unrecorded. These findings might have significant implications for individuals with pre-existing comorbidities, including cardiovascular disease and type 2 diabetes. Topics: alpha-2-Antiplasmin; Biomarkers; C-Reactive Protein; COVID-19; Diabetes Mellitus, Type 2; Fibrin; Fibrinogen; Humans; Interleukin-6; Plasma Kallikrein; Platelet Factor 4; Post-Acute COVID-19 Syndrome; Proteomics; Thrombosis; von Willebrand Factor | 2022 |
Plasma Kallikrein Contributes to Coagulation in the Absence of Factor XI by Activating Factor IX.
FXIa (factor XIa) induces clot formation, and human congenital FXI deficiency protects against venous thromboembolism and stroke. In contrast, the role of FXI in hemostasis is rather small, especially compared with FIX deficiency. Little is known about the cause of the difference in phenotypes associated with FIX deficiency and FXI deficiency. We speculated that activation of FIX via the intrinsic coagulation is not solely dependent on FXI(a; activated FXI) and aimed at identifying an FXI-independent FIX activation pathway. Approach and Results: We observed that ellagic acid and long-chain polyphosphates activated the coagulation system in FXI-deficient plasma, as could be demonstrated by measurement of thrombin generation, FIXa-AT (antithrombin), and FXa-AT complex levels, suggesting an FXI bypass route of FIX activation. Addition of a specific PKa (plasma kallikrein) inhibitor to FXI-deficient plasma decreased thrombin generation, prolonged activated partial thromboplastin time, and diminished FIXa-AT and FXa-AT complex formation, indicating that PKa plays a role in the FXI bypass route of FIX activation. In addition, FIXa-AT complex formation was significantly increased in. We demonstrated that activation of FXII leads to thrombin generation via FIX activation by PKa in the absence of FXI. These findings may, in part, explain the different phenotypes associated with FIX and FXI deficiencies. Topics: Animals; Blood Coagulation; Disease Models, Animal; Factor IX; Factor XI; Factor XI Deficiency; Female; Male; Mice; Mice, Inbred C57BL; Plasma Kallikrein; Thrombin; Thrombosis | 2020 |
Improving the understanding of plasma kallikrein contribution to arterial thrombus formation using two plant protease inhibitors.
The purpose of antithrombotic therapy is the prevention of thrombus formation and/or its extension with a minimum risk of bleeding. The inhibition of a variety of proteolytic processes, particularly those of the coagulation cascade, has been reported as a property of plant protease inhibitors. The role of trypsin inhibitors (TIs) from Delonix regia (Dr) and Acacia schweinfurthii (As), members of the Kunitz family of protease inhibitors, was investigated on blood coagulation, platelet aggregation, and thrombus formation. Different from Acacia schweinfurthii trypsin inhibitor (AsTI), Delonix regia trypsin inhibitor (DrTI) is a potent inhibitor of FXIa with a K Topics: Animals; Disease Models, Animal; Humans; Mice; Plants; Plasma Kallikrein; Protease Inhibitors; Thrombosis | 2019 |
Plasma kallikrein structure reveals apple domain disc rotated conformation compared to factor XI.
Essentials Zymogen PK is activated to PKa and cleaves substrates kininogen and FXII contributing to bradykinin generation. Monomeric PKa and dimeric homologue FXI utilize the N-terminal apple domains to recruit substrates. A high-resolution 1.3 Å structure of full-length PKa reveals an active conformation of the protease and apple domains. The PKa protease and four-apple domain disc organization is 180° rotated compared to FXI. SUMMARY: Background Plasma prekallikrein (PK) and factor XI (FXI) are apple domain-containing serine proteases that when activated to PKa and FXIa cleave substrates kininogen, factor XII, and factor IX, respectively, directing plasma coagulation, bradykinin release, inflammation, and thrombosis pathways. Objective To investigate the three-dimensional structure of full-length PKa and perform a comparison with FXI. Methods A series of recombinant full-length PKa and FXI constructs and variants were developed and the crystal structures determined. Results and conclusions A 1.3 Å structure of full-length PKa reveals the protease domain positioned above a disc-shaped assemblage of four apple domains in an active conformation. A comparison with the homologous FXI structure reveals the intramolecular disulfide and structural differences in the apple 4 domain that prevents dimer formation in PK as opposed to FXI. Two latchlike loops (LL1 and LL2) extend from the PKa protease domain to form interactions with the apple 1 and apple 3 domains, respectively. A major unexpected difference in the PKa structure compared to FXI is the 180° disc rotation of the apple domains relative to the protease domain. This results in a switched configuration of the latch loops such that LL2 interacts and buries portions of the apple 3 domain in the FXI zymogen whereas in PKa LL2 interacts with the apple 1 domain. Hydrogen-deuterium exchange mass spectrometry on plasma purified human PK and PKa determined that regions of the apple 3 domain have increased surface exposure in PKa compared to the zymogen PK, suggesting conformational change upon activation. Topics: Binding Sites; Bradykinin; Factor XI; Humans; Inflammation; Kininogens; Mutation; Plasma Kallikrein; Prekallikrein; Protein Binding; Protein Domains; Protein Multimerization; Recombinant Proteins; Thrombosis | 2019 |
Plasma kallikrein mediates brain hemorrhage and edema caused by tissue plasminogen activator therapy in mice after stroke.
Thrombolytic therapy using tissue plasminogen activator (tPA) in acute stroke is associated with increased risks of cerebral hemorrhagic transformation and angioedema. Although plasma kallikrein (PKal) has been implicated in contributing to both hematoma expansion and thrombosis in stroke, its role in the complications associated with the therapeutic use of tPA in stroke is not yet available. We investigated the effects of tPA on plasma prekallikrein (PPK) activation and the role of PKal on cerebral outcomes in a murine thrombotic stroke model treated with tPA. We show that tPA increases PKal activity in vitro in both murine and human plasma, via a factor XII (FXII)-dependent mechanism. Intravenous administration of tPA increased circulating PKal activity in mice. In mice with thrombotic occlusion of the middle cerebral artery, tPA administration increased brain hemorrhage transformation, infarct volume, and edema. These adverse effects of tPA were ameliorated in PPK (Klkb1)-deficient and FXII-deficient mice and in wild-type (WT) mice pretreated with a PKal inhibitor prior to tPA. tPA-induced brain hemisphere reperfusion after photothrombolic middle cerebral artery occlusion was increased in Klkb1 Topics: Administration, Intravenous; Angioedema; Animals; Cerebral Hemorrhage; Disease Models, Animal; Factor XII; Fibrinolytic Agents; Gene Expression; Humans; Infarction, Middle Cerebral Artery; Male; Matrix Metalloproteinase 9; Mice; Mice, Knockout; Plasma Kallikrein; Stroke; Thrombolytic Therapy; Thrombosis; Tissue Plasminogen Activator | 2017 |
Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation.
Recent evidence suggests that ischemic stroke is a thromboinflammatory disease. Plasma kallikrein (PK) cleaves high-molecular-weight kininogen to release bradykinin (BK) and is a key constituent of the proinflammatory contact-kinin system. In addition, PK can activate coagulation factor XII, the origin of the intrinsic coagulation cascade. Thus, PK triggers 2 important pathological pathways of stroke formation, thrombosis and inflammation.. We investigated the consequences of PK inhibition in transient and permanent models of ischemic stroke.. PK-deficient mice of either sex challenged with transient middle cerebral artery occlusion developed significantly smaller brain infarctions and less severe neurological deficits compared with controls without an increase in infarct-associated hemorrhage. This protective effect was preserved at later stages of infarctions as well as after permanent stroke. Reduced intracerebral thrombosis and improved cerebral blood flow could be identified as underlying mechanisms. Moreover, blood-brain barrier function was maintained in mice lacking PK, and the local inflammatory response was reduced. PK-deficient mice reconstituted with PK or BK again developed brain infarctions similar to wild-type mice. Important from a translational perspective, inhibition of PK in wild-type mice using a PK-specific antibody was likewise effective even when performed in a therapeutic setting up to 3 hours poststroke.. PK drives thrombus formation and inflammation via activation of the intrinsic coagulation cascade and the release of BK but appears to be dispensable for hemostasis. Hence, PK inhibition may offer a safe strategy to combat thromboembolic disorders including ischemic stroke. Topics: Animals; Brain Infarction; Female; Inflammation; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Plasma Kallikrein; Stroke; Thrombosis | 2015 |
The kallikreins: old proteases with new clinical potentials.
Topics: Animals; Biomarkers, Tumor; Blood Pressure; Cardiovascular Diseases; Diabetes Mellitus; Female; Gene Expression Regulation, Neoplastic; Humans; Inflammation; Male; Mice; Neoplasms; Peptide Hydrolases; Plasma Kallikrein; Risk; Thrombosis; Tissue Kallikreins | 2013 |
PF-04886847 (an inhibitor of plasma kallikrein) attenuates inflammatory mediators and activation of blood coagulation in rat model of lipopolysaccharide (LPS)-induced sepsis.
The plasma kallikrein-mediated proteolysis regulates both thrombosis and inflammation. Previous study has shown that PF-04886847 is a potent and competitive inhibitor of kallikrein, suggesting that it might be useful for the treatment of kallikrein-kinin mediated inflammatory and thrombotic disorders. In the rat model of lipopolysaccharide (LPS) -induced sepsis used in this study, pretreatment of rats with PF-04886847 (1 mg/kg) prior to LPS (10 mg/kg) prevented endotoxin-induced increase in granulocyte count in the systemic circulation. PF-04886847 significantly reduced the elevated plasma 6-keto PGF1α levels in LPS treated rats, suggesting that PF-04886847 could be useful in preventing hypotensive shock during sepsis. PF-04886847 did not inhibit LPS-induced increase in plasma TNF-α level. Pretreatment of rats with PF-04886847 prior to LPS did not attenuate endotoxin-induced decrease in platelet count and plasma fibrinogen levels as well as increase in plasma D-dimer levels. PF-04886847 did not protect the animals against LPS-mediated acute hepatic and renal injury and disseminated intravascular coagulation (DIC). Since prekallikrein (the zymogen form of plasma kallikrein) deficient patients have prolonged activated partial thromboplastin time (aPTT) without having any bleeding disorder, the anti-thrombotic property and mechanism of action of PF-04886847 was assessed. In a rabbit balloon injury model designed to mimic clinical conditions of acute thrombotic events, PF-04886847 reduced thrombus mass dose-dependently. PF-04886847 (1 mg/kg) prolonged both aPTT and prothrombin time (PT) in a dose-dependent manner. Although the findings of this study indicate that PF-04886847 possesses limited anti-thrombotic and anti-inflammatory effects, PF-04886847 may have therapeutic potential in other kallikrein-kinin mediated diseases. Topics: Aminobenzoates; Aminopyridines; Animals; Blood Coagulation; Disease Models, Animal; Disseminated Intravascular Coagulation; Dose-Response Relationship, Drug; Inflammation Mediators; Lipopolysaccharides; Male; Plasma Kallikrein; Rabbits; Rats; Rats, Sprague-Dawley; Respiratory Distress Syndrome; Sepsis; Thrombosis | 2012 |
Effects of plasma kallikrein deficiency on haemostasis and thrombosis in mice: murine ortholog of the Fletcher trait.
Plasma kallikrein is a multifunctional serine protease involved in contact activation of coagulation. Deficiency in humans is characterised by prolonged activated partial thromboplastin time (aPTT); however, the balance between thrombosis and haemostasis is not fully understood. A study of plasma kallikrein-deficient mice revealed increased aPTT, without prolonged bleeding time. Prekallikrein antisense oligonucleotide (ASO) treatment in mice suggested potential for a positive therapeutic index. The current goal was to further define the role of plasma kallikrein in coagulation. Blood pressure and heart rate were normal in plasma kallikrein-deficient mice, and mice were completely protected from occlusion (100 ± 1.3% control flow) in 3.5% FeCl3 -induced arterial thrombosis versus heterozygotes (20 ± 11.4%) and wild-type littermates (8 ± 0%). Vessels occluded in 8/8 wild-type, 7/8 heterozygotes, and 0/8 knockouts. Anti-thrombotic protection was less pronounced in 5% FeCl3-induced arterial injury. Integrated blood flow was 8 ± 0% control in wild-type and heterozygotes, and significantly (p<0.01) improved to 43 ± 14.2% in knockouts. The number of vessels occluded was similar in all genotypes. Thrombus weight was significantly reduced in knockouts (-47%) and heterozygotes (-23%) versus wild-type in oxidative venous thrombosis. Average tail bleeding time increased modestly in knockout mice compared to wild-type. Average renal bleeding times were similar in all genotypes. These studies confirm and extend studies with prekallikrein ASO, and demonstrate that plasma kallikrein deletion prevents occlusive thrombus formation in mice with a minimal role in provoked bleeding. Additional support for the significance of the intrinsic pathway in the coagulation cascade is provided, as well as for a potential new anti-thrombotic approach. Topics: Animals; Bleeding Time; Chlorides; Disease Models, Animal; Ferric Compounds; Hemorrhage; Hemostasis; Heterozygote; Mice; Mice, Knockout; Oligonucleotides, Antisense; Partial Thromboplastin Time; Phenotype; Plasma Kallikrein; Prekallikrein; Thrombosis; Time Factors; Venous Thrombosis | 2012 |
Plasma kallikrein: novel functions for an old protease.
Topics: Animals; Hemostasis; Plasma Kallikrein; Prekallikrein; Thrombosis | 2012 |
Thrombotic events associated with C1 esterase inhibitor products in patients with hereditary angioedema: investigation from the United States Food and Drug Administration adverse event reporting system database.
To investigate reports of thrombotic events associated with the use of C1 esterase inhibitor products in patients with hereditary angioedema in the United States.. Retrospective data mining analysis.. The United States Food and Drug Administration (FDA) adverse event reporting system (AERS) database.. Case reports of C1 esterase inhibitor products, thrombotic events, and C1 esterase inhibitor product-associated thrombotic events (i.e., combination cases) were extracted from the AERS database, using the time frames of each respective product's FDA approval date through the second quarter of 2011. Bayesian statistical methodology within the neural network architecture was implemented to identify potential signals of a drug-associated adverse event. A potential signal is generated when the lower limit of the 95% 2-sided confidence interval of the information component, denoted by IC₀₂₅ , is greater than zero. This suggests that the particular drug-associated adverse event was reported to the database more often than statistically expected from reports available in the database. Ten combination cases of thrombotic events associated with the use of one C1 esterase inhibitor product (Cinryze) were identified in patients with hereditary angioedema. A potential signal demonstrated by an IC₀₂₅ value greater than zero (IC₀₂₅ = 2.91) was generated for these combination cases.. The extracted cases from the AERS indicate continuing reports of thrombotic events associated with the use of one C1 esterase inhibitor product among patients with hereditary angioedema. The AERS is incapable of establishing a causal link and detecting the true frequency of an adverse event associated with a drug; however, potential signals of C1 esterase inhibitor product-associated thrombotic events among patients with hereditary angioedema were identified in the extracted combination cases. Topics: Adolescent; Adult; Adverse Drug Reaction Reporting Systems; Aged; Angioedemas, Hereditary; Bayes Theorem; Child; Complement C1 Inactivator Proteins; Complement C1 Inhibitor Protein; Complement C1s; Complement Inactivating Agents; Data Mining; Female; Humans; Male; Middle Aged; Neural Networks, Computer; Peptides; Retrospective Studies; Thrombosis; United States; United States Food and Drug Administration; Young Adult | 2012 |
Activation profiles of human kallikrein-related peptidases by proteases of the thrombostasis axis.
The human kallikrein-related peptidases (KLKs) comprise 15 members (KLK1-15) and are the single largest family of serine proteases. The KLKs are utilized, or proposed, as clinically important biomarkers and therapeutic targets of interest in cancer and neurodegenerative disease. All KLKs appear to be secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their N-terminal pro-peptide. This processing is a key step in the regulation of KLK function. Much recent work has been devoted to elucidating the potential for activation cascades between members of the KLK family, with physiologically relevant KLK regulatory cascades now described in skin desquamation and semen liquefaction. Despite this expanding knowledge of KLK regulation, details regarding the potential for functional intersection of KLKs with other regulatory proteases are essentially unknown. To elucidate such interaction potential, we have characterized the ability of proteases associated with thrombostasis to hydrolyze the pro-peptide sequences of the KLK family using a previously described pro-KLK fusion protein system. A subset of positive hydrolysis results were subsequently quantified with proteolytic assays using intact recombinant pro-KLK proteins. Pro-KLK6 and 14 can be activated by both plasmin and uPA, with plasmin being the best activator of pro-KLK6 identified to date. Pro-KLK11 and 12 can be activated by a broad-spectrum of thrombostasis proteases, with thrombin exhibiting a high degree of selectivity for pro-KLK12. The results show that proteases of the thrombostasis family can efficiently activate specific pro-KLKs, demonstrating the potential for important regulatory interactions between these two major protease families. Topics: Enzyme Activation; Factor Xa; Fibrinolysin; Fibroblast Growth Factor 1; Humans; Hydrolysis; Kallikreins; Peptide Hydrolases; Plasma Kallikrein; Recombinant Fusion Proteins; Thrombosis | 2008 |
Suppression of argatroban-induced endogenous thrombolysis by PKSI-527, and antibodies to TPA and UPA, evaluated in a rat arterial thrombolysis model.
We have previously confirmed, using a rat mesenteric arteriole thrombolysis model, that thrombin inhibition induces endogenous thrombolysis in vivo. In addition, we have shown that thrombin-activatable fibrinolysis inhibitor (TAFI) plays a role in the down regulation of endogenous thrombolysis. However, the mechanism of endogenous thrombolysis or spontaneous plasmin generation in vivo remains unclear. It has been shown in an in vitro system that plasma kallikrein activates pro-urokinase (pro uPA) and/or plasminogen, resulting in plasmin generation. These findings suggest that spontaneous fibrinolysis might be mediated by tPA and plasma kallikrein-dependent uPA. The aim of the present study was to examine whether these mechanisms play a dominant role in endogenous thrombolysis in vivo, using our rat mesenteric arterial thrombolysis model. Argatroban infusion enhanced endogenous thrombolysis. PKSI-527, anti uPA and anti tPA IgGs suppressed argatroban-induced thrombolysis. Also, the antibody IgG preparations suppressed endogenous thrombolysis in the absence of argatroban. In the presence of PKSI-527, anti tPA IgG was more effective than anti uPA IgG in suppressing argatroban-induced thrombolysis. The results suggested that both tPA and plasma kallikrein-mediated uPA activation and tPA release contribute to endogenous fibrinolytic or thrombolytic mechanisms. Topics: Animals; Antibodies; Arginine; Drug Antagonism; Fibrinolysin; Fibrinolysis; Fibrinolytic Agents; Kallikreins; Male; Mesenteric Arteries; Phenylalanine; Pipecolic Acids; Plasma Kallikrein; Rats; Rats, Wistar; Sulfonamides; Thrombolytic Therapy; Thrombosis; Tissue Plasminogen Activator; Tranexamic Acid; Urokinase-Type Plasminogen Activator | 2003 |