eapb0503 has been researched along with Melanoma* in 3 studies
3 other study(ies) available for eapb0503 and Melanoma
Article | Year |
---|---|
New imidazoquinoxaline derivatives: Synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure-activity relationships.
Microtubules are considered as important targets of anticancer therapy. EAPB0503 and its structural imidazo[1,2-a]quinoxaline derivatives are major microtubule-interfering agents with potent anticancer activity. In this study, the synthesis of several new derivatives of EAPB0503 is described, and the anticancer efficacy of 13 novel derivatives on A375 human melanoma cell line is reported. All new compounds show significant antiproliferative activity with IC50 in the range of 0.077-122μM against human melanoma cell line (A375). Direct inhibition of tubulin polymerization assay in vitro is also assessed. Results show that compounds 6b, 6e, 6g, and EAPB0503 highly inhibit tubulin polymerization with percentages of inhibition of 99%, 98%, 90%, and 84% respectively. Structure-activity relationship studies within the series are also discussed in line with molecular docking studies into the colchicine-binding site of tubulin. Topics: Antineoplastic Agents; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Humans; Imidazoles; Melanoma; Molecular Docking Simulation; Molecular Structure; Polymerization; Quinoxalines; Structure-Activity Relationship; Tubulin; Tumor Cells, Cultured | 2016 |
Metabolism and pharmacokinetics of EAPB0203 and EAPB0503, two imidazoquinoxaline compounds previously shown to have antitumoral activity on melanoma and T-lymphomas.
For several years, our group has been developing quinoxalinic compounds. Two of them, N-methyl-1-(2-phenethyl)imidazo[1,2-a]quinoxalin-4-amine (EAPB0203) and 1-(3-methoxyphenyl)-N-methylimidazo[1,2-a]quinoxalin-4-amine (EAPB0503), have emerged as the most promising anticancer drugs. In the present work, we determined metabolism pathways using liver microsomes from four mammalian species including human. We identified the cytochrome P450 isoform(s) involved in the metabolism and then investigated the pharmacokinetics and metabolism of EAPB0203 and EAPB0503 in rat after intravenous and intraperitoneal administration. Biotransformation of the compounds involved demethylation and hydroxylation reactions. Rat and dog metabolized the compounds at a higher rate than mouse and human. In all species, CYP1A1/2 and CYP3A isoforms were the predominant enzymes responsible for the metabolism. From human liver microsomes, unbound intrinsic clearances were approximately 56 ml/(min · g) protein. EAPB0203 and EAPB0503 were extensively bound to human plasma proteins, mainly human serum albumin (HSA) (∼98-99.5%). Thus, HSA could act as carrier of these compounds in human plasma. Scatchard plots showed patterns in which the plots yielded upwardly convex hyperbolic curves. On the basis of the Hill coefficients, there appears to be interaction between the binding sites of HSA, suggesting positive cooperativity. The main in vitro metabolites were identified in vivo. Total clearances of EAPB0203 and EAPB0503 [3.2 and 2.2 l/(h · kg), respectively] were notably lower than the typical cardiac plasma output in rat. The large volumes of distribution of these compounds (4.3 l/kg for EAPB0203 and 2.5 l/kg for EAPB0503) were consistent with extensive tissue binding. After intraperitoneal administration, bioavailability was 22.7% for EAPB0203 and 35% for EAPB0503 and a significant hepatic first-pass effect occurred. Topics: Animals; Antineoplastic Agents; Biotransformation; Blood Proteins; Dogs; Humans; Lymphoma, T-Cell; Melanoma; Mice; Microsomes, Liver; Molecular Structure; Protein Binding; Quinoxalines; Rats; Rats, Sprague-Dawley; Species Specificity; Spectrometry, Mass, Electrospray Ionization; Tissue Distribution | 2010 |
New imidazo[1,2-a]quinoxaline derivatives: synthesis and in vitro activity against human melanoma.
New imidazo[1,2-a]quinoxaline analogues have been synthesized in good yields via a bimolecular condensation of 2-imidazole carboxylic acid, followed by a coupling with ortho-fluoroaniline and subsequent substitution on the imidazole ring by Suzuki Cross-coupling reaction using microwave assistance. Antitumor activities of these derivatives were evaluated by growth inhibition of A375 cells in vitro. All compounds exhibited high activities compared to imiquimod and fotemustine used as references. Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Drug Screening Assays, Antitumor; Humans; Imidazoles; Melanoma; Quinoxalines; Structure-Activity Relationship | 2009 |