e-7010 and Disease-Models--Animal

e-7010 has been researched along with Disease-Models--Animal* in 3 studies

Other Studies

3 other study(ies) available for e-7010 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Reactive Oxygen Species Mediates the Synergistic Activity of Fenretinide Combined with the Microtubule Inhibitor ABT-751 against Multidrug-Resistant Recurrent Neuroblastoma Xenografts.
    Molecular cancer therapeutics, 2016, Volume: 15, Issue:11

    ABT-751 is a colchicine-binding site microtubule inhibitor. Fenretinide (4-HPR) is a synthetic retinoid. Both agents have shown activity against neuroblastoma in laboratory models and clinical trials. We investigated the antitumor activity of 4-HPR + the microtubule-targeting agents ABT-751, vincristine, paclitaxel, vinorelbine, or colchicine in laboratory models of recurrent neuroblastoma. Drug cytotoxicity was assessed in vitro by a fluorescence-based assay (DIMSCAN) and in subcutaneous xenografts in nu/nu mice. Reactive oxygen species levels (ROS), apoptosis, and mitochondrial depolarization were measured by flow cytometry; cytochrome c release and proapoptotic proteins were measured by immunoblotting. 4-HPR + ABT-751 showed modest additive or synergistic cytotoxicity, mitochondrial membrane depolarization, cytochrome c release, and caspase activation compared with single agents in vitro; synergism was inhibited by antioxidants (ascorbic acid, α-tocopherol). 4-HPR + ABT-751 was highly active against four xenograft models, achieving multiple maintained complete responses. The median event-free survival (days) for xenografts from 4 patients combined was control = 28, 4-HPR = 49, ABT-751 = 77, and 4-HPR + ABT-751 > 150 (P < 0.001). Apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, TUNEL) was significantly higher in 4-HPR + ABT-751-treated tumors than with single agents (P < 0.01) and was inhibited by ascorbic acid and α-tocopherol (P < 0.01), indicating that ROS from 4-HPR enhanced the activity of ABT-751. 4-HPR also enhanced the activity against neuroblastoma xenografts of vincristine or paclitaxel, but the latter combinations were less active than 4-HPR + ABT-751. Our data support clinical evaluation of 4-HPR combined with ABT-751 in recurrent and refractory neuroblastoma. Mol Cancer Ther; 15(11); 2653-64. ©2016 AACR.

    Topics: Animals; Antineoplastic Agents; Antioxidants; Apoptosis; Caspases; Cell Line, Tumor; Cell Survival; Cytochromes c; Disease Models, Animal; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Fenretinide; Humans; Membrane Potential, Mitochondrial; Mice; Neoplasm Recurrence, Local; Neuroblastoma; Reactive Oxygen Species; Sulfonamides; Tumor Burden; Xenograft Model Antitumor Assays

2016
Tumor selective antivascular effects of the novel antimitotic compound ABT-751: an in vivo rat regional hemodynamic study.
    Cancer chemotherapy and pharmacology, 2004, Volume: 54, Issue:3

    Selective induction of vascular damage within a growing tumor is a potentially important approach in the search for potent anticancer therapeutics. Tubulin-binding (antimitotic) agents destabilize cellular microtubules, suppress tumor growth, and exert antivascular effects with varying degrees of tumor selectivity in preclinical models. The tumor-selective, antivascular effects of ABT-751, a novel, orally active antimitotic agent, currently in phase II clinical development, were characterized in vivo in the present study. We developed an in vivo rat model designed to quantify acute changes in regional vascular resistance (VR) in both tumor and non-tumor vascular beds simultaneously. Tissue-isolated tumors (1 g) with blood flow supplied by a single epigastric artery were grown in rats. Subsequently, tumor blood flow was measured under anesthesia in solid tumors and also in mesenteric, renal, and normal epigastric arteries. Phenylephrine-induced (1 micromol/kg) increases in VR were not different between tumor and non-tumor epigastric arteries, suggesting that tumor vessels possess relatively normal vasoconstrictive function. ABT-751 (3, 10, and 30 mg/kg; i.v.) produced modest transient increases in mean arterial pressure with no effect on heart rate. Tumor VR increased to 75+/-36, 732+/-172, and 727+/-125% above baseline, respectively (P<0.05 for the 10 and 30 mg/kg doses), whereas VR in normal epigastric arteries was not significantly affected. Administration of ABT-751 produced transient modest ( P<0.05) increases in mesenteric VR and no effect on renal VR. These results demonstrate that ABT-751 produces marked reductions in tumor blood flow in the intact rat at doses that exert negligible effects on normal vascular function.

    Topics: Abdominal Neoplasms; Administration, Oral; Animals; Antineoplastic Agents; Disease Models, Animal; Glioma; Hemodynamics; Male; Neoplasms, Experimental; Pyridones; Rats; Rats, Inbred F344; Sulfonamides; Tubulin; Vascular Resistance

2004