dynorphins has been researched along with Stroke* in 2 studies
2 other study(ies) available for dynorphins and Stroke
Article | Year |
---|---|
Defective neuropeptide processing and ischemic brain injury: a study on proprotein convertase 2 and its substrate neuropeptide in ischemic brains.
Using a focal cerebral ischemia model in rats, brain ischemia-induced changes in expression levels of mRNA and protein, and activities of proprotein convertase 2 (PC2) in the cortex were examined. In situ hybridization analyses revealed a transient upregulation of the mRNA level for PC2 at an early reperfusion hour, at which the level of PC2 protein was also high as determined by immunocytochemistry and western blotting. When enzymatic activities of PC2 were analyzed using a synthetic substrate, a significant decrease was observed at early reperfusion hours at which levels of PC2 protein were still high. Also decreased at these reperfusion hours were tissue levels of dynorphin-A(1-8) (DYN-A(1-8)), a PC2 substrate, as determined by radioimmunoassay. Further examination of PC2 protein biosynthesis by metabolic labeling in cultured neuronal cells showed that in ischemic cells, the proteolytic processing of PC2 was greatly attenuated. Finally, in mice, an intracerebroventricular administration of synthetic DYN-A(1-8) significantly reduced the extent of ischemic brain injury. In mice those lack an active PC2, exacerbated brain injury was observed after an otherwise non-lethal focal ischemia. We conclude that brain ischemia attenuates PC2 and PC2-mediated neuropeptide processing. This attenuation may play a role in the pathology of ischemic brain injury. Topics: Animals; Brain Ischemia; Dynorphins; In Situ Hybridization; Neuropeptides; Peptide Fragments; Proprotein Convertase 2; Rats; Reperfusion; RNA, Messenger; Stroke; Time Factors; Up-Regulation | 2009 |
Opioids modulate post-ischemic progression in a rat model of stroke.
Alterations in the opioidergic system have been found in cerebral ischemia. Neuroprotection studies have demonstrated the involvement of the opioidergic system in cerebral ischemia/reperfusion (I/R). However, the neuroprotective mechanisms remain largely unclear. This study was conducted to investigate whether intracerebroventricular administration of opioidergic agonists has a neuroprotective effect against cerebral ischemia in rats and, if this proved to be the case, to determine the potential neuroprotective mechanisms. Using a focal cerebral I/R rat model, we demonstrated that the opioidergic agents, BW373U86 (delta agonist) and Dynorphin A 1-13 (kappa agonist), but not TAPP (mu agonist), attenuated cerebral ischemic injury as manifested in the reduction of cerebral infarction and preservation of neurons. The antagonism assay showed that the neuroprotective effect of Dynorphin A was attenuated by nor-Binaltorphimine (kappa antagonist). Surprisingly, BW373U86-induced neuroprotection was not changed by Naltrindole (delta antagonist). These findings indicate that BW373U86 and Dynorphin A exerted distinct neuroprotection against ischemia via opioid-independent and -dependent mechanisms, respectively. The post-ischemic protection in beneficial treatments was accompanied by alleviations in brain edema, inflammatory cell infiltration, and pro-inflammatory cytokine interleukin 6 (IL-6) expression. In vitro cell study further demonstrated that the opioidergic agonists, delta and kappa, but not mu, attenuated IL-6 production from stimulated glial cells. Our findings indicate that opioidergic agents have a role in post-ischemic progression through both opioid-dependent and -independent mechanisms. In spite of the distinct-involved action mechanism, the potential neuroprotective effect of opioidergic compounds was associated with immune suppression. Taken together, these findings suggest a potential role for opioidergic agents in the therapeutic consideration of neuroinflammatory diseases. However, a better understanding of the mechanisms involved is necessary before this therapeutic potential can be realized. Topics: Amidines; Analgesics, Opioid; Animals; Benzamides; Brain; Brain Ischemia; Cytoprotection; Disease Models, Animal; Disease Progression; Dynorphins; Encephalitis; Immune Tolerance; Interleukin-6; Male; Narcotic Antagonists; Neuroprotective Agents; Peptide Fragments; Piperazines; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Stroke | 2008 |