dynorphins has been researched along with Hypoxia* in 5 studies
5 other study(ies) available for dynorphins and Hypoxia
Article | Year |
---|---|
Changes of plasma level of neurotensin, somatostatin, and dynorphin A in pilots under acute hypoxia.
This study examined the effect of high-altitude exposure on the plasma levels of certain peptides in the regulation of heart and blood vessels. The plasma levels of dynorphin A, neurotensin, and somatostatin were measured in 30 pilots before and after exposure to hypoxia in an altitude chamber. The results showed that plasma concentrations of the three peptides were increased significantly after exposure to hypoxia. In the test group, 18 pilots lived on a plateau (1,725 m above sea level); the other 12 pilots lived on a plain (208 m above sea level). When exposed to hypoxia, the three peptides increased significantly in the plateau group, but in the plain group, neurotensin and dynorphin A increased but somatostatin had no significant change. These results indicate that these peptides might participate in the regulation of cardiovascular activities under hypoxia. Topics: Adult; Aerospace Medicine; Altitude; Atmosphere Exposure Chambers; Case-Control Studies; Dynorphins; Humans; Hypoxia; Male; Neurotensin; Somatostatin | 1998 |
Vasopressin contributes to dynorphin modulation of hypoxic cerebrovasodilation.
Because pial artery dilation during a 20- or 40-min hypoxic exposure was less than that observed during a 5- or 10-min exposure, stimulus duration determines the vascular response to hypoxia. Dynorphin (Dyn) modulates hypoxic pial dilation and contributes to decremented dilation during longer hypoxic exposures. This study was designed to determine whether vasopressin (VP) contributes to Dyn modulation of hypoxic pial dilation in newborn pigs equipped with a closed cranial window. Moderate (M) and severe (S) hypoxia (arterial PO2 approximately 35 and 25 mmHg, respectively) had no effect on cerebrospinal fluid VP during a 5-min exposure but increased its concentration during longer exposure periods. The VP antagonist [beta-mercapto-beta,beta-cyclopentamethylenepropionyl1,O-Me-Tyr2, Arg8]vasopressin (MEAVP) had no influence on pial dilation during the 5-min exposure but potentiated the 20- and 40-min M and S hypoxic exposure dilations: 21 +/- 2 vs. 29 +/- 3% and 23 +/- 2 vs. 33 +/- 2% for 20- and 40-min S hypoxic dilation before and after MEAVP. Topical VP during 5 min of hypoxia elicited dilation that was reversed to vasoconstriction during 20 min of S and 40 min of M and S hypoxia. Similarly, during 5 min of hypoxia, Dyn elicited dilation that was reversed to vasoconstriction during longer hypoxic periods. MEAVP blunted this Dyn-induced vasoconstriction. These data show that VP modulates hypoxic pial dilation in a stimulus duration-dependent manner and that VP contributes to the reversal of Dyn from a dilator to a constrictor during prolonged hypoxia. Finally, these data suggest that VP contributes to Dyn modulation of hypoxic cerebrovasodilation. Topics: Animals; Arginine Vasopressin; Arteries; Blood Pressure; Cerebrovascular Circulation; Drug Synergism; Dynorphins; Female; Gases; Hormone Antagonists; Hydrogen-Ion Concentration; Hypoxia; Male; Pia Mater; Swine; Time Factors; Vasodilation; Vasopressins | 1998 |
Opioids and nitric oxide contribute to hypoxia-induced pial arterial vasodilation in newborn pigs.
The present study was designed to investigate the contribution of opioids and nitric oxide (NO) to hypoxia-induced pial vasodilation. Newborn pigs equipped with a closed cranial window were used to measure pial arteriolar diameter and to collect cortical periarachnoid cerebrospinal fluid (CSF) for assay of opioids and guanosine 3',5'-cyclic monophosphate (cGMP). Hypoxia-induced pial dilation was potentiated by norbinaltorphimine, 10(-6) M, a kappa-opioid antagonist (25 +/- 2 vs. 33 +/- 3%, n = 5), but was blunted by beta-funaltrexamine, 10(-8) M, a mu-opioid antagonist (28 +/- 2 vs. 19 +/- 1%, n = 5). Hypoxia-induced vasodilation was associated with increased CSF methionine enkephalin, a mu-opioid agonist (884 +/- 29 vs. 2,638 +/- 387 pg/ml, n = 5). N omega-nitro-L-arginine (L-NNA), an NO synthase inhibitor (10(-6) M), also blunted hypoxia-induced vasodilation that was further diminished by coadministration of L-NNA and beta-funaltrexamine (26 +/- 2, 14 +/- 1, and 9 +/- 1%, respectively, n = 5). Reversal of the above order of antagonist administration resulted in similar inhibition of hypoxia-induced pial dilation. Hypoxia-induced vasodilation was also associated with an increase in CSF cGMP that was attenuated by L-NNA (2.1 +/- 0.1- vs. 1.1 +/- 0.2-fold change in CSF cGMP, n = 5). Sodium nitroprusside (10(-6) M) increased CSF cGMP and methionine enkephalin concentration similar to hypoxia. These data suggest that hypoxia-induced pial arterial vasodilation, in part, is due to NO and/or cGMP-induced methionine enkephalin release as well as the direct action of NO. Topics: Amino Acid Oxidoreductases; Analysis of Variance; Animals; Animals, Newborn; Arginine; Arterioles; Cerebral Arteries; Cyclic GMP; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Methionine; Enkephalins; Female; Hypoxia; Male; Muscle, Smooth, Vascular; Naltrexone; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Nitroprusside; Receptors, Opioid, kappa; Receptors, Opioid, mu; Swine; Vasodilation | 1995 |
Actions of opiate agonists, naloxone, and paraben preservatives in the rat lung circulation.
Previous studies have documented direct vascular effects of opiate substances in the systemic circulation. Because opiate receptors have been identified in the lung, we wondered whether opiate substances might affect vasoreactivity in the lung circulation. We studied the pulmonary vascular effects of three opiate agonists: morphine, leucine-enkephalin, and dynorphin, as well as the opiate receptor antagonist naloxone, in isolated rat lungs perfused with a cell- and plasma-free salt solution. Because of previous reports of the smooth muscle effects of the methyl- and propylparaben preservatives in the naloxone preparation, we also studied the pulmonary vascular effects of these preservatives in the rat lung circulation. We found that morphine, a mu-receptor agonist, leucine-enkephalin, a delta-receptor agonist, and dynorphin, a kappa-receptor agonist, caused no immediate vascular effect when injected into the pulmonary artery. In addition, morphine did not affect the pulmonary vasoconstrictions induced by hypoxia, angiotensin II, or potassium chloride. The commercial preparation of naloxone, Narcan, caused a marked vasodilation during hypoxic pulmonary vasoconstriction. However, this effect was entirely attributable to the preservatives methyl- and propylparaben, as pure naloxone had no effect on either the baseline pulmonary vascular tone or the vasoconstrictive response to hypoxia. We conclude that opiate receptor agonists and antagonists do not affect vasoreactivity in the rat lung circulation and that the methyl- and propylparaben preservatives in Narcan are pulmonary vasodilators. Topics: Angiotensin II; Animals; Dynorphins; Enkephalin, Leucine; Hypoxia; Male; Morphine; Naloxone; Potassium Chloride; Pulmonary Circulation; Rats; Rats, Inbred Strains; Vasoconstriction | 1986 |
Characterization of opioid receptors in the cat carotid body involved in chemosensory depression in vivo.
The effects of selective opioid receptor agonists and antagonists on neural discharge recorded from carotid body arterial chemoreceptors in vivo were studied in anaesthetized cats. Mean ID50 values were determined for each agonist and used to assess chemodepressant potency on intracarotid (i.c.) injection in animals artificially ventilated with air. [Met]enkephalin, [Leu]enkephalin, [D-Ala2, D-Leu5]enkephalin and [D-Pen2, D-Pen5]enkephalin were more potent chemodepressants than [D-Ala2, Me-Phe4, Gly-ol5]enkephalin, dynorphin (1-8) or ethylketocyclazocine; morphiceptin (mu-agonist) was inactive. The rank order of potency was compatible with the involvement of delta-opioid receptors in opioid-induced depression of chemosensory discharge. ICI 154129, a delta-opioid receptor antagonist, was used in fairly high doses and caused reversible dose-related antagonism of chemodepression induced by [Met]enkephalin. It also antagonized depression caused by single doses of [Leu]enkephalin, [D-Ala2, D-Leu5]enkephalin, [D-Ala2, Me-Phe4, Gly-ol5]enkephalin or dynorphin (1-8). ICI 174864, a more potent and selective delta-opioid receptor antagonist, also antagonized chemodepression induced by [Met]enkephalin or by the selective delta-receptor agonist [D-Pen2, D-Pen5]enkephalin. Comparison of background or 'spontaneous' chemosensory discharge during the 30 min periods immediately before and after injecting ICI 174864 (0.1-0.2 mg kg-1 i.c.) showed a significant increase in discharge in one experiment, but in four others discharge was either unaffected or decreased after the antagonist, which argues against a toxic depression of chemosensors by endogenous opioids under resting conditions in our preparation. Sensitivity of the carotid chemoreceptors to hypoxia (ventilating with 10% O2) was increased significantly after ICI 174864, which could be taken as evidence that endogenous opioids depress chemosensitivity during hypoxia. In contrast, responsiveness to hypercapnia was reduced after the antagonist, implying that endogenous opioids may potentiate chemoreceptor sensitivity during hypercapnia. The results obtained using 'selective' agonists and antagonists provide evidence that depression of chemosensory discharge caused by injected opioids involves a delta type of opioid receptor within the cat carotid body. Endogenous opioids may modulate arterial chemoreceptor sensitivity to physiological stimuli such as hypoxia and hypercapnia. Topics: Animals; Carotid Body; Cats; Chemoreceptor Cells; Cyclazocine; Dose-Response Relationship, Drug; Dynorphins; Endorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalin, Methionine; Enkephalins; Ethylketocyclazocine; Hypercapnia; Hypoxia; Peptide Fragments; Receptors, Opioid | 1986 |