duramycin has been researched along with Myocardial-Infarction* in 2 studies
1 review(s) available for duramycin and Myocardial-Infarction
Article | Year |
---|---|
Molecular imaging of cell death.
Apoptosis (programmed cell death) and necrosis (uncontrolled cell death) are two distinct processes of cell death that have been described. Non-invasive molecular imaging of these two processes can have several clinical applications and has various approaches in pre-clinical research. Apoptosis imaging enables a specific and early measurement of response in cancer patients. In case of acute myocardial infarction (AMI) and cerebral stroke the degree of both apoptosis and necrosis is abundant. Imaging of both types of cell death is crucial for diagnosis and could differentiate between "real" and "rescuable" cell damage. In a pre-clinical setting cell death imaging offers the possibility for dynamic study protocols and repeated measurements of cell death in the same animal. This review provides an overview of the radiopharmaceutical development and in vivo evaluation of apoptosis and necrosis detecting radioligands that have emerged so far. Some apoptosis radiopharmaceuticals have made it to clinical trials ((99m)Tc-labeled Anx and (18)F-ML-10) while others need further optimization and evaluation (e.g., (18)F-WC-II-89). (99m)Tc-glucarate has been widely used in patients to image necrosis, but this radiopharmaceutical only works early after the onset of necrosis. Other necrosis avid probes like (123)I labeled hypericin and its monocarboxylic acid derivative and (99m)Tc(CO)(3)-bis-hydrazide-bis-DTPA pamoic acid need further evaluation but show already promising results for imaging of necrosis. As a general conclusion molecular imaging of both apoptosis and necrosis is necessary to understand the cell death process in several pathologies. Topics: Animals; Annexin A5; Anthracenes; Antibodies, Monoclonal; Apoptosis; Bacteriocins; Cell Death; Glucaric Acid; Humans; Indoles; Models, Animal; Molecular Diagnostic Techniques; Molecular Probe Techniques; Myocardial Infarction; Necrosis; Organometallic Compounds; Organotechnetium Compounds; Peptides; Perylene; Radiopharmaceuticals; Stroke; Sulfonamides; Synaptotagmin I | 2009 |
1 other study(ies) available for duramycin and Myocardial-Infarction
Article | Year |
---|---|
99mTc-labeled duramycin as a novel phosphatidylethanolamine-binding molecular probe.
With only 19 amino acids, duramycin is the smallest known polypeptide that has a defined 3-dimensional binding structure. Duramycin binds phosphatidylethanolamine (PtdE) at a 1:1 ratio with high affinity and exclusive specificity. As an abundant binding target, PtdE is a major phospholipid and accounts for about 20% of the phospholipid content in mammalian cellular membranes. PtdE is externalized to the surface of apoptotic cells and also becomes accessible in necrotic cells because of compromised plasma membrane integrity. Given the unique physicochemical properties of duramycin and the availability of PtdE in acute cell death, the goal of this study was to develop and evaluate 99mTc-duramycin as a novel molecular probe for imaging PtdE.. Duramycin is covalently modified with succinimidyl 6-hydrazinonicotinate acetone hydrazone (HYNIC) and labeled with 99mTc using a coordination chemistry involving tricine-phosphine coligands. The retention of PtdE-binding activities was confirmed using competition assays with PtdE-containing liposomes. The blood clearance, pharmacokinetics, and biodistribution of 99mTc-duramycin were measured in rats. Finally, 99mTc-duramycin binding to acute cell death in vivo was demonstrated using a rat model of acute myocardial infarction induced by ischemia and reperfusion and confirmed using autoradiography and histology.. HYNIC-derivatized duramycin with 1:1 stoicheometry was synthesized and confirmed by mass spectrometry. The radiolabeling efficiency was 80%-85%, radiochemical purity was 78%-89%, and specific activity was 54 GBq. The radiotracer was purified with high-performance liquid chromatography radiodetection before use. The specific uptake of 99mTc-duramycin in apoptotic cells, compared with that in viable control cells, was enhanced by more than 30-fold. This binding was competitively diminished in the presence of PtdE-containing liposomes but not by liposomes consisting of other phospholipid species. Intravenously injected 99mTc-duramycin has favorable pharmacokinetic and biodistribution profiles: it quickly clears from the circulation via the renal system, with a blood half-life of less than 4 min in rats. The hepatic and gastrointestinal uptake were very low. 99mTc-duramycin is completely unmetabolized in vivo, and the intact agent is recovered from the urine. Combined with a fast clearance and low hepatic background, the avid binding of 99mTc-duramycin to the infarcted myocardium quickly becomes conspicuous shortly after injection. The uptake of radioactivity in infarcted tissues was confirmed by autoradiography and histology.. 99mTc-duramycin is a stable, low-molecular-weight PtdE-binding radiopharmaceutical, with favorable in vivo imaging profiles. It is a strong candidate as a molecular probe for PtdE imaging and warrants further development and characterization. Topics: Amino Acid Sequence; Animals; Apoptosis; Bacteriocins; Binding, Competitive; Humans; Jurkat Cells; Liposomes; Molecular Sequence Data; Myocardial Infarction; Myocardial Reperfusion Injury; Organometallic Compounds; Peptides; Phosphatidylethanolamines; Radionuclide Imaging; Radiopharmaceuticals; Rats; Rats, Sprague-Dawley; Technetium; Tissue Distribution | 2008 |