dtpp has been researched along with Lung-Neoplasms* in 2 studies
2 other study(ies) available for dtpp and Lung-Neoplasms
Article | Year |
---|---|
Combination of a novel photosensitizer DTPP with 650 nm laser results in efficient apoptosis, arresting cell cycle and cytoskeleton protein changes in lung cancer A549 cells.
Photodynamic therapy (PDT) using photosensitized reaction to produce cytotoxicity was used for cancer therapy in recent years. To study the effectiveness of PDT mediated by a novel photosensitizer (PS), DTPP 5-(4'-(2″-dicarboxymethylamino)acetamidophenyl)-10, 15, 20-triphenylporphyrin, on lung cancer A549 cell lines in vitro, DTPP was employed in different concentrations (2, 4, 6, 8, 10, 12, 15, 20, 25, and 30 μg/ml) and combined with 650 nm laser of different power densities (0.6, 1.2, 2.4, 4.8, 7.2, and 9.6 J/cm(2)) that resulted in obvious inhibition of cell proliferation and apoptosis. Results showed that cell survival rates have a dependent relationship with time and PS concentrations and no significant cytotoxicity was induced by DTPP itself. Apoptosis and cell cycle S arrest were observed; cytoskeleton morphologic observation revealed collapse, sparkling, and shrunken shapes. Apoptosis-related protein caspase-3 overexpression was detected while caspase-9, bcl-2, and cytoskeleton protein beta-catenin were in low levels of expression than the control. Cleavage of beta-catenin by caspase-3 or other proteases from the lysosome might be the main reason for the cytoskeleton collapse as beta-tubulin and actin were at a stable level 12 h after PDT. This paper gives a better understanding of the effectiveness of DTPP-mediated PDT in lung cancer A549 cells both with regard to dosimetry and apoptosis changes. Topics: Apoptosis; Blotting, Western; Caspase 3; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cytoskeletal Proteins; Cytoskeleton; Humans; Lasers; Lung Neoplasms; Organophosphorus Compounds; Photochemotherapy; Photosensitizing Agents; S Phase | 2015 |
Effect of DTPP-mediated photodynamic therapy on cell morphology, viability, cell cycle, and cytotoxicity in a murine lung adenocarcinoma cell line.
Photodynamic therapy (PDT) involves the administration and activation of photosensitizing reagents in cancer tissues to induce cytotoxicity. Here we examined the effects of 5-5- (4-N, N-diacetoxylphenyl)-10,15,20- tetraphenylporphyrin (DTPP) -mediated PDT on cell morphology, viability, cell cycle, and cytotoxicity in a murine lung adenocarcinoma cell line. LA795 murine lung adenocarcinoma cell line was used in the study, with cellular uptake of DTPP being quantified by a UV-visible spectrophotometer. The subcellular localization of DTPP was detected by confocal laser scanning microscopy, alteration of cell morphology after PDT was observed by an inverted light microscope, and late-stage apoptosis was examined by terminal dUTP nick end labeling (TUNEL) . The effects of influencing factors on cytotoxicity of PDT in LA795 cells was investigated with varying concentrations of DTPP, energy densities, power densities, and antioxidants by 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Effects of PDT on cell cycle and plasma membrane integrity were studied by flow cytometry analysis. The uptake of DTPP by LA795 cells reached maximum after incubation for 24 h. Confocal laser scanning microscopy showed that DTPP was mainly in the mitochondrion, and slight localization was detected in the lysosomes. Cellular inhibitory effects increased with increased irradiation dose and DTPP concentration, while unactivated DTPP had low toxicity. Flow cytometry analysis revealed that DTPP-PDT-treated cells showed S phase arrest. Cell membrane damage initiation, repair, and irreversible damage were observed at 2, 4, and 5 h after DTPP-PDT , respectively. Together, our results demonstrated cell apoptosis, compromised viability, and cell cycle S phase arrest of LA795 in response to DTPP-PDT , while no effect on the lung cancer cells was observed with irradiation or photosensitizer treatment alone. Topics: Adenocarcinoma; Adenocarcinoma of Lung; Animals; Apoptosis; Cell Cycle; Cell Line, Tumor; Cell Membrane; Cell Nucleus Shape; Cell Shape; Cell Survival; Humans; Lung Neoplasms; Mice; Organophosphorus Compounds; Photochemotherapy; Photosensitizing Agents; Porphyrins | 2015 |