dsr-6434 has been researched along with Disease-Models--Animal* in 3 studies
3 other study(ies) available for dsr-6434 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
A novel systemically administered Toll-like receptor 7 agonist potentiates the effect of ionizing radiation in murine solid tumor models.
Although topical TLR7 therapies such as imiquimod have proved successful in the treatment of dermatological malignancy, systemic delivery may be required for optimal immunotherapy of nondermatological tumors. We report that intravenous delivery of the novel small molecule TLR7 agonist, DSR-6434, leads to the induction of type 1 interferon and activation of T and B lymphocytes, NK and NKT cells. Our data demonstrate that systemic administration of DSR-6434 enhances the efficacy of ionizing radiation (IR) and leads to improved survival in mice bearing either CT26 or KHT tumors. Of the CT26 tumor-bearing mice that received combined therapy, 55% experienced complete tumor resolution. Our data reveal that these long-term surviving mice have a significantly greater frequency of tumor antigen specific CD8(+) T cells when compared to age-matched tumor-naïve cells. To evaluate therapeutic effects on spontaneous metastases, we showed that combination of DSR-6434 with local IR of the primary tumor significantly reduced metastatic burden in the lung, when compared to time-matched cohorts treated with IR alone. The data demonstrate that systemic administration of the novel TLR7 agonist DSR-6434 in combination with IR primes an antitumor CD8(+) T-cell response leading to improved survival in syngeneic models of colorectal carcinoma and fibrosarcoma. Importantly, efficacy extends to sites outside of the field of irradiation, reducing metastatic load. Clinical evaluation of systemic TLR7 therapy in combination with IR for the treatment of solid malignancy is warranted. Topics: Adenine; Animals; B-Lymphocytes; Disease Models, Animal; Female; HEK293 Cells; Humans; Immunotherapy; Interferon-gamma; Killer Cells, Natural; Lung; Membrane Glycoproteins; Mice; Mice, Inbred BALB C; Mice, Inbred C3H; Mice, Knockout; Neoplasm Metastasis; Neoplasm Transplantation; Neoplasms; Radiation, Ionizing; Spleen; T-Lymphocytes; Toll-Like Receptor 7 | 2014 |
Synthesis and evaluation of 8-oxoadenine derivatives as potent Toll-like receptor 7 agonists with high water solubility.
We report the discovery of novel series of highly potent TLR7 agonists based on 8-oxoadenines, 1 and 2 by introducing and optimizing various tertiary amines onto the N(9)-position of the adenine moiety. The introduction of the amino group resulted in not only improved water solubility but also enhanced TLR7 agonistic activity. In particular compound 20 (DSR-6434) indicated an optimal balance between the agonistic potency and high water solubility. It also demonstrated a strong antitumor effect in vivo by intravenous administration in a tumor bearing mice model. Topics: Adenine; Administration, Intravenous; Animals; Antineoplastic Agents; Cell Line, Tumor; Disease Models, Animal; HEK293 Cells; Humans; Mice; Molecular Structure; Solubility; Toll-Like Receptor 7; Water | 2013 |