drf-2725 has been researched along with Obesity* in 2 studies
2 other study(ies) available for drf-2725 and Obesity
Article | Year |
---|---|
The dual PPARalpha/gamma agonist, ragaglitazar, improves insulin sensitivity and metabolic profile equally with pioglitazone in diabetic and dietary obese ZDF rats.
In 6- and 10-week-old obesity-prone (fa/fa) Zucker diabetic fatty (ZDF) rats, effects of prevention and intervention therapies, respectively, were compared between PPARalpha/gamma agonist, ragaglitazar (RAGA) and separate PPARgamma and alpha agonists, pioglitazone (PIO) and bezafibrate (BF). In a separate study, lean (+/+) ZDF rats fed highly palatable chow to induce dietary obesity and insulin resistance were treated similarly. To test insulin-secretory capacity, all animals underwent a hyperglycaemic clamp. Insulin sensitivity was improved equally by RAGA and PIO in fa/fa rats subjected to both prevention and intervention treatments (e.g., prevention HOMA-IR: -71 and -72%, respectively), as was hyperglycaemia (both -68%). BF had no effect on either parameter in any study. Plasma lipids were markedly reduced (by 48-77%) by RAGA in all studies, equivalent to PIO, but to a greater extent than BF. RAGA improved beta-cell function (HOMA-beta) more than three-fold with prevention and intervention therapies, whereas PIO showed improvement only in intervention therapy. Consistent with improved insulin sensitivity, glucose infusion rate during the clamp was 60% higher in RAGA-treated animals subjected to prevention therapy, but there was little additional insulin-secretory response, suggesting that insulin secretion was already maximal.Thus, RAGA and PIO equally improve metabolic profile in ZDF rats, particularly when administered early in the course of diabetes. They also improve beta-cell function, although this is better demonstrated through indices incorporating fasting insulin and glucose concentrations than through the hyperglycaemic clamp technique in this model. Topics: Adipose Tissue; Animals; Bezafibrate; Body Composition; Body Weight; Diabetes Mellitus; Diet; Energy Metabolism; Glucose Clamp Technique; Hypoglycemic Agents; Hypolipidemic Agents; Insulin; Insulin Resistance; Obesity; Organ Size; Oxazines; Pancreas; Phenylpropionates; Pioglitazone; PPAR alpha; PPAR gamma; Rats; Rats, Inbred Strains; Receptors, Cell Surface; Receptors, Leptin; Thiazolidinediones | 2005 |
Differential influences of peroxisome proliferator-activated receptors gamma and -alpha on food intake and energy homeostasis.
Chronic treatment with compounds activating peroxisome proliferator-activated receptor (PPAR)gamma and -alpha influences body energy stores, but the underlying mechanisms are only partially known. In a chronic-dosing study, equiefficacious antihyperglycemic doses of the PPAR gamma agonist pioglitazone and PPAR alpha/gamma dual activator ragaglitazar were administered to obesity-prone male rats. The PPAR alpha agonist fenofibrate had no effect on insulin sensitivity. Pioglitazone transiently increased and fenofibrate transiently decreased food intake, whereas ragaglitazar had no impact on feeding. As a result, body adiposity increased in pioglitazone-treated rats and decreased in fenofibrate-treated rats. PPAR gamma compounds markedly increased feed efficiency, whereas PPAR alpha agonist treatment decreased feed efficiency. In fenofibrate-treated rats, plasma acetoacetate was significantly elevated. Plasma levels of this potentially anorectic ketone body were unaffected in pioglitazone- and ragaglitazar-treated rats. High-fat feeding markedly increased visceral fat pads, and this was prevented by pioglitazone and ragaglitazar treatment. Pioglitazone treatment enlarged subcutaneous adiposity in high-fat-fed rats. In conclusion, PPAR gamma activation increases both food intake and feed efficiency, resulting in net accumulation of subcutaneous body fat. The impact of PPAR gamma activation on feeding and feed efficiency appears to be partially independent because the PPAR alpha component of ragaglitazar completely counteracts the orexigenic actions of PPAR gamma activation without marked impact on feed efficiency. Topics: Adipose Tissue; Animals; Biomarkers; Blood Glucose; Eating; Energy Metabolism; Fenofibrate; Gene Expression; Glucose Tolerance Test; Glycated Hemoglobin; Homeostasis; Hypoglycemic Agents; Hypolipidemic Agents; Insulin; Lipids; Liver; Male; Obesity; Organ Size; Oxazines; Phenylpropionates; Pioglitazone; Rats; Rats, Mutant Strains; Receptors, Cytoplasmic and Nuclear; Thiazoles; Thiazolidinediones; Transcription Factors; Weight Gain | 2003 |