dorsomorphin has been researched along with Kidney-Neoplasms* in 2 studies
2 other study(ies) available for dorsomorphin and Kidney-Neoplasms
Article | Year |
---|---|
Autophagy is a major mechanism for the dual effects of curcumin on renal cell carcinoma cells.
The aim of this study was to explore the effects of curcumin on renal cell carcinoma(RCC) through regulating autophagy. Cell viabilities were determined by MTT assay in RCC cells after treatment with curcumin at different concentrations for various durations. ATG7 silencing RCC cells were established to test the role of autophagy. The levels of key proteins on autophagy pathway were analyzed by Western blot. We found out that following 24 h curcumin treatment, the viability of RCC cells had an increase at 5 μM and no significant change at 20 μM but a decrease at 80 μM. These effects were affected by the inhibition of autophagy. When pre-incubated with inhibitors of the AMPK and ER stress pathways, the LC3II levels of RCC cells at 5 μM and 20 μM of curcumin were significantly decreased; however, when treated with the inhibitor of the oxidative stress pathway, the LC3II levels of RCC cells at 80 μM were significantly decreased. In conclusion, the present study indicated Curcumin protected cells from death at low concentration but promotes cell death at high concentration. Autophagy played a dual role in curcumin's effects on RCC. The AMPK and ER stress pathways might be involved at low concentrations of curcumin to protect cells, while the oxidative stress pathway might take part in toxicity at high curcumin concentration. Topics: Acetylcysteine; AMP-Activated Protein Kinases; Antineoplastic Agents; Autophagy; Carcinoma, Renal Cell; Cell Line, Tumor; Cell Survival; Curcumin; Endoplasmic Reticulum Stress; Humans; Kidney Neoplasms; Oxidative Stress; Phenylbutyrates; Pyrazoles; Pyrimidines; Signal Transduction | 2018 |
Compound C sensitizes Caki renal cancer cells to TRAIL-induced apoptosis through reactive oxygen species-mediated down-regulation of c-FLIPL and Mcl-1.
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), either alone or in combination with other anticancer drugs, is considered as a new strategy for anticancer therapy. Compound C, a cell-permeable pyrrazolopyrimidine derivative, acts as a potent, selective, reversible ATP-competitive inhibitor of AMP-activated protein kinase (AMPK). In this study, we show that compound C sensitizes Caki human renal cancer cells, but not normal human skin fibroblast cells (HSF) and human mesangial cells, to TRAIL-mediated apoptosis. However, AMPK siRNA failed to affect TRAIL-mediated apoptosis in Caki cells and transduction of dominant negative AMPK rather attenuated TRAIL-induced apoptosis, indicating that the effect of compound C on sensitization of TRAIL-induced apoptosis is independent of AMPK activity. Interestingly, we found that down-regulation of c-FLIP(L) and Mcl-1 contributes to compound C-enhanced TRAIL-induced apoptosis. Reduced expression of c-FLIP(L) and Mcl-1 were caused by the decreased protein stability of c-FLIP(L) and Mcl-1, but not by their transcriptional control, in compound C-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC) significantly inhibited the cell death induced by the combined treatment with compound C and TRAIL as well as recovered the expression levels of c-FLIP(L) and Mcl-1 down-regulated by the combinatory treatment with compound C plus TRAIL, suggesting that compound C-stimulated TRAIL-induced apoptosis appears to be dependent on the generation of reactive oxygen species for down-regulation of c-FLIP(L) and Mcl-1. Taken together, the present study demonstrates that compound C enhances TRAIL-induced apoptosis in human renal cancer cells by ROS-mediated c-FLIP(L) and Mcl-1 down-regulation. Topics: AMP-Activated Protein Kinases; Apoptosis; Blotting, Western; CASP8 and FADD-Like Apoptosis Regulating Protein; Cell Proliferation; Cells, Cultured; Fibroblasts; Flow Cytometry; Humans; Kidney Neoplasms; Mesangial Cells; Myeloid Cell Leukemia Sequence 1 Protein; Proto-Oncogene Proteins c-bcl-2; Pyrazoles; Pyrimidines; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; RNA, Small Interfering; TNF-Related Apoptosis-Inducing Ligand | 2010 |