dorsomorphin has been researched along with Hypertension--Pulmonary* in 3 studies
3 other study(ies) available for dorsomorphin and Hypertension--Pulmonary
Article | Year |
---|---|
Discovery of Novel Pyrazolo[3,4-
Current pulmonary arterial hypertension (PAH) therapeutic strategies mainly focus on vascular relaxation with less emphasis on vascular remodeling, which results in poor prognosis. Hence, dual pathway regulators with vasodilation effect via soluble guanylate cyclase (sGC) stimulation and vascular remodeling regulation effect by AMP-activated protein kinase (AMPK) inhibition provide more advantages and potentialities. Herein, we designed and synthesized a series of novel pyrazolo[3,4- Topics: Adenylate Kinase; Animals; Cell Line; Drug Design; Humans; Hypertension, Pulmonary; Pyrazoles; Pyridines; Rats; Structure-Activity Relationship; Vascular Remodeling; Vasodilation | 2020 |
Adenosine monophosphate-activated protein kinase is required for pulmonary artery smooth muscle cell survival and the development of hypoxic pulmonary hypertension.
Human pulmonary artery smooth muscle cells (HPASMCs) express both adenosine monophosphate-activated protein kinase (AMPK) α1 and α2. We investigated the distinct roles of AMPK α1 and α2 in the survival of HPASMCs during hypoxia and hypoxia-induced pulmonary hypertension (PH). The exposure of HPASMCs to hypoxia (3% O2) increased AMPK activation and phosphorylation, and the inhibition of AMPK with Compound C during hypoxia decreased their viability and increased lactate dehydrogenase activity and apoptosis. Although the suppression of either AMPK α1 or α2 expression led to increased cell death, the suppression of AMPK α2 alone increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. It also resulted in the decreased expression of myeloid cell leukemia sequence 1 (MCL-1). The knockdown of MCL-1 or MCL-1 inhibitors increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. On the other hand, the suppression of AMPK α1 expression alone prevented hypoxia-mediated autophagy. The inhibition of autophagy induced cell death in HPASMCs. Our results suggest that AMPK α1 and AMPK α2 play differential roles in the survival of HPASMCs during hypoxia. The activation of AMPK α2 maintains the expression of MCL-1 and prevents apoptosis, whereas the activation of AMPK α1 stimulates autophagy, promoting HPASMC survival. Moreover, treatment with Compound C, which inhibits both isoforms of AMPK, prevented and partly reversed hypoxia-induced PH in mice. Taking these results together, our study suggests that AMPK plays a key role in the pathogenesis of pulmonary arterial hypertension, and AMPK may represent a novel therapeutic target for the treatment of pulmonary arterial hypertension. Topics: Adenosine Monophosphate; AMP-Activated Protein Kinases; Animals; Autophagy; Cell Survival; Cells, Cultured; Familial Primary Pulmonary Hypertension; Fibroblasts; Humans; Hypertension, Pulmonary; Hypoxia; Mice; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Phosphorylation; Proto-Oncogene Proteins c-bcl-2; Pulmonary Artery; Pyrazoles; Pyrimidines | 2013 |
AMP kinase activation improves angiogenesis in pulmonary artery endothelial cells with in utero pulmonary hypertension.
Pulmonary artery endothelial cells (PAEC) isolated from fetal lambs with in utero pulmonary hypertension (IPH) have phenotypical changes that lead to increased reactive oxygen species (ROS) formation and impaired angiogenesis. AMP-activated protein kinase (AMPK) is known to be activated by ROS, which is expected to help angiogenesis in IPH-PAEC. The objectives of this study were to investigate AMPK responses in IPH and its role in angiogenesis. We observed that, compared with control PAEC, IPH-PAEC have decreased phosphorylation of AMPKα catalytic subunit and AMPK downstream enzymes, indicating a decrease in AMPK activity. In addition, the expression of AMPK kinases is decreased, and protein phosphatase 2 is increased in IPH-PAEC, potentially contributing to the decreased AMPK activation. Metformin, an AMPK activator, improved IPH-PAEC angiogenesis while increasing endothelial NO synthase (eNOS) serine(1179) phosphorylation and decreasing the eNOS-caveolin-1 association. Metformin also increased MnSOD activity and the expression of both eNOS and MnSOD. The increase in angiogenesis by Metformin is abolished by pretreatment with AMPK inhibitor, Compound C. Expression of vascular endothelial growth factor (VEGF) and platelet-derived growth factor β (PDGFβ) are decreased in IPH-PAEC compared with control PAEC and were not altered by Metformin. These data indicate that Metformin improves angiogenesis through mechanisms independent of these angiogenic factors. In conclusion, activation of AMPK restores angiogenesis and increases the bioavailability of nitric oxide in IPH. Whether Metformin is beneficial in the management of pulmonary hypertension requires further investigation. Topics: AMP-Activated Protein Kinases; Animals; Caveolin 1; Cells, Cultured; Endothelial Cells; Enzyme Activation; Hypertension, Pulmonary; Metformin; Neovascularization, Physiologic; Nitric Oxide Synthase Type III; Phosphorylation; Platelet-Derived Growth Factor; Pulmonary Artery; Pyrazoles; Pyrimidines; Reactive Oxygen Species; Sheep, Domestic; Superoxide Dismutase; Vascular Endothelial Growth Factor A | 2013 |