domoic-acid has been researched along with Cognitive-Dysfunction* in 2 studies
2 other study(ies) available for domoic-acid and Cognitive-Dysfunction
Article | Year |
---|---|
Quercetin attenuates domoic acid-induced cognitive deficits in mice.
Domoic acid (DA) is one of the best known marine toxins, causative of important neurotoxic alterations. DA effects are documented both in wildlife and experimental assays, showing that this toxin causes severe injuries principally in the hippocampal area. Accumulating evidence indicates that mitochondrial dysfunction and oxidative stress are involved in DA-induced cognitive functional impairment. Therefore, therapeutics targeted to improve mitochondrial function and increase oxidative stress defence could be beneficial. Quercetin, a bioflavanoid, has been reported to have potent neuroprotective effects and anti-oxidative ability, but its preventive effects on DA-induced mitochondrial dysfunction and cognitive impairment have not been well characterised. In this study, we evaluated the effects of quercetin on DA-induced cognitive deficits in mice and explored its potential mechanism. Our results showed that the oral administration of quercetin to DA-treated mice significantly improved their behavioural performance in a novel objective recognition task and a Morris water maze task. These improvements were mediated, at least in part, by a stimulation of PPARγ coactivator 1α-mediated mitochondrial biogenesis signalling and an amelioration of mitochondrial dysfunction. Moreover, quercetin activated nuclear factorerythroid-2-related factor-2 (Nrf2)-mediated phase II enzymes and decreased reactive oxygen species and protein carbonylation. Furthermore, the AMP-activated protein kinase (AMPK) activity significantly increased in the quercetin-treated group. Taken together, these findings suggest that a reduction in mitochondrial dysfunction through the increase of AMPK activity, coupled with an increase in Nrf2 pathway mediated oxidative defence, may be one of the mechanisms by which quercetin improves cognitive impairment induced by DA in mice. Topics: Animals; Cognition; Cognitive Dysfunction; Disease Models, Animal; Hippocampus; Kainic Acid; Male; Mice; Mice, Inbred C57BL; Mitochondria; Neuroprotective Agents; Oxidative Stress; Quercetin; Reactive Oxygen Species | 2018 |
Chronic low-level exposure to the common seafood toxin domoic acid causes cognitive deficits in mice.
The consumption of one meal of seafood containing domoic acid (DA) at levels high enough to induce seizures can cause gross histopathological lesions in hippocampal regions of the brain and permanent memory loss in humans and marine mammals. Seafood regulatory limits have been set at 20mgDA/kg shellfish to protect human consumers from symptomatic acute exposure, but the effects of repetitive low-level asymptomatic exposure remain a critical knowledge gap. Recreational and Tribal-subsistence shellfish harvesters are known to regularly consume low levels of DA. The aim of this study was to determine if chronic low-level DA exposure, at doses below those that cause overt signs of neurotoxicity, has quantifiable impacts on cognitive function. To this end, female C57BL/6NJ mice were exposed to asymptomatic doses of DA (≈0.75mg/kg) or vehicle once a week for several months. Spatial learning and memory were tested in a radial water maze paradigm at one, six and 25 weeks of exposure, after a nine-week recovery period following cessation of exposure, and at three old age time points (18, 24 and 28 months old). Mice from select time points were also tested for activity levels in a novel cage environment using a photobeam activity system. Chronic low-level DA exposure caused significant spatial learning impairment and hyperactivity after 25 weeks of exposure in the absence of visible histopathological lesions in hippocampal regions of the brain. These cognitive effects were reversible after a nine-week recovery period with no toxin exposure and recovery was sustained into old age. These findings identify a new potential health risk of chronic low-level exposure in a mammalian model. Unlike the permanent cognitive impacts of acute exposure, the chronic low-level effects observed in this study were reversible suggesting that these deficits could potentially be managed through cessation of exposure if they also occur in human seafood consumers. Topics: Animals; Cognitive Dysfunction; Female; Hippocampus; Kainic Acid; Learning; Marine Toxins; Mice; Mice, Inbred C57BL; Seafood; Spatial Memory; Toxicity Tests, Chronic | 2017 |