dolastatin-10 has been researched along with Anemia* in 2 studies
1 trial(s) available for dolastatin-10 and Anemia
Article | Year |
---|---|
Novel marine-derived anticancer agents: a phase I clinical, pharmacological, and pharmacodynamic study of dolastatin 10 (NSC 376128) in patients with advanced solid tumors.
Dolastatin (DOLA)-10 is a pentapeptide isolated from the mollusc Dolabella auricularia with clinically promising antitumor activity documented in various in vitro and in vivo tumor models. The objectives of this Phase I study were to determine the maximum tolerated dose, evaluate toxic effects, and document any antitumor activity of this novel agent. Using an electrospray ionization mass spectroscopy system, we also characterized the clinical pharmacokinetics, pharmacodynamics, and metabolism of DOLA-10. The maximum tolerated dose was reached at 300 microg/m2. Granulocytopenia, the dose-limiting toxicity, was documented in 33% of the patients treated at that dose level. There were no episodes of thrombocytopenia or severe anemia (Hgb < 8), and no major nonhematological toxicity was observed. Stabilization of tumor growth was observed in four patients, but no objective responses were seen. Whereas a two-compartment model described the DOLA-10 plasma concentration-time data reasonably well, a three-compartment model consistently performed better. After a rapid distribution phase, DOLA-10 plasma levels declined with mean beta and gamma half-lives of 0.99 and 18.9 h, respectively. Significant interpatient and intrapatient variability in DOLA-10 plasma clearances was observed. The mean area under the concentration-time curve increased proportionally as the dose was escalated, but there was significant overlap between dose levels. The area under the concentration-time curve and the percentage of decline in neutrophils were correlated. A single DOLA-10 metabolite was detected in five patients. Unlike the in vitro studies of DOLA-10, the principal metabolite detected was an N-demethyl derivative, confirmed by mass spectroscopy. In all five subjects, the concentration of this metabolite never exceeded 2% of the simultaneously measured parent drug concentration. The available preclinical, pharmacological, and clinical data suggest that further study of escalated DOLA-10 dosing with cytokine support is warranted. Topics: Adult; Aged; Anemia; Animals; Anorexia; Antineoplastic Agents; Area Under Curve; Constipation; Depsipeptides; Dose-Response Relationship, Drug; Fatigue; Female; Humans; Male; Metabolic Clearance Rate; Middle Aged; Mollusca; Nausea; Neoplasms; Oligopeptides; Treatment Outcome; Vomiting | 2000 |
1 other study(ies) available for dolastatin-10 and Anemia
Article | Year |
---|---|
Toxicity of dolastatin 10 in mice, rats and dogs and its clinical relevance.
Dolastatin 10 (DOL 10), an oligopeptide isolated from the sea hare Dolabella auricularia, has been shown to be a highly potent cytotoxic agent in a variety of human tumor cell lines. The purpose of this study was to conduct preclinical toxicity evaluations to determine the target organ(s) of toxicity and its reversibility, the dose-limiting toxicity and the maximum tolerated dose (MTD), and to use this information for arriving at a safe starting dose and dose schedule for phase I clinical trails.. DOL10 was administered as a single intravenous bolus dose to CD2F1 mice, Fischer-344 rats and beagle dogs. Endpoints evaluated included clinical observations, body weights, hematology, serum clinical chemistry, and microscopic pathology of tissues.. The MTD (i. e. the highest dose that did not cause lethality but produced substantial toxicity) was approximately 1350 microg/m(2) body surface area (450 microg/kg) in mice, 450 microg/m(2) (75 microg/kg) in rats and =400 microg/m(2) (=20 microg/kg) in dogs. Adverse signs were observed at doses >/=1350 microg/m(2) in mice, >/=150 microg/m(2) in rats and >/=400 microg/m(2) in dogs. Decreased weight gain or actual weight loss was observed at doses >/=1350 microg/m(2) in mice, >/=600 microg/m(2) in rats and >/=450 microg/m(2) in dogs. In all three species, the primary target organ of toxicity was the bone marrow, as indicated by decreases in the numbers of erythroid cells, myeloid cells, and megakaryocytes in the femoral bone marrow and by decreased white blood cell (WBC) and reticulocyte counts in peripheral blood. Marked neutropenia (i.e. >50% decrease compared to control animal or baseline values) was the principal effect on WBCs and occurred within a week of dosing. A mild anemia was evident 1 week after administering the drug to rats and dogs. The hematologic effects were transient and reversed by study termination. Other lesions at the MTD levels were cellular depletion and necrosis in lymphoid organs (rats and dogs), marked depletion of extramedullary hematopoietic cellular elements in the spleen (rats), thymic atrophy (mice and dogs), and minimal cellular necrosis in the ileum (rats). More extensive and severe pathology was observed in animals sacrificed in a moribund condition or found dead.. Myelotoxicity was dose-limiting in all three species with mice being the least sensitive. In a phase I clinical trial, granulocytopenia was dose-limiting. Moreover, the MTD of DOL10 for rats and dogs is comparable to the human MTD. Therefore, the results from the preclinical toxicology studies correctly predicted a safe starting dose, the dose-limiting toxicity, and the MTD in humans. Topics: Anemia; Animals; Antineoplastic Agents; Bone Marrow; Depsipeptides; Dogs; Female; Hematopoietic Stem Cells; Humans; Injections, Intravenous; Leukocyte Count; Male; Mice; Mice, Inbred Strains; Oligopeptides; Rats; Rats, Inbred F344; Reticulocyte Count; Weight Gain; Weight Loss | 1999 |