docosapentaenoic-acid and Edema

docosapentaenoic-acid has been researched along with Edema* in 2 studies

Other Studies

2 other study(ies) available for docosapentaenoic-acid and Edema

ArticleYear
Docosahexaenoic acid (DHA) and docosapentaenoic acid (DPAn-6) algal oils reduce inflammatory mediators in human peripheral mononuclear cells in vitro and paw edema in vivo.
    Lipids, 2010, Volume: 45, Issue:5

    The anti-inflammatory activity associated with fish oil has been ascribed to the long-chain polyunsaturated fatty acids (LC-PUFA), predominantly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Here we examined the anti-inflammatory effects of two DHA-rich algal oils, which contain little EPA, and determined the contribution of the constituent fatty acids, particularly DHA and docosapentaenoic acid (DPAn-6). In vitro, lipopolysaccharide (LPS)-stimulated Interleukin-1 beta (IL-1beta) and Tumor Necrosis Factor-alpha (TNF-alpha) secretion in human peripheral blood mononuclear cells (PBMC) was inhibited with apparent relative potencies of DPAn-6 (most potent) > DHA > EPA. In addition, DPAn-6 decreased intracellular levels of cyclooxygenase-2 (COX-2) and was a potent inhibitor of pro-inflammatory prostaglandin E2 (PGE2) production. DHA/DPAn-6-rich DHA-S (DHA-S) algal oil was more effective at reducing edema in rats than DHA-rich DHA-T (DHA-T), suggesting that DPAn-6 has anti-inflammatory properties. Further in vivo analyses demonstrated that feeding DPAn-6 alone, provided as an ethyl ester, reduced paw edema to an extent approaching that of indomethacin and enhanced the anti-inflammatory activity of DHA when given in combination. Together, these results demonstrate that DPAn-6 has anti-inflammatory activity and enhances the effect of DHA in vitro and in vivo. Thus, DHA-S algal oil may have potential for use in anti-inflammatory applications.

    Topics: Animals; Anti-Inflammatory Agents; Cells, Cultured; Disease Models, Animal; Docosahexaenoic Acids; Edema; Eicosapentaenoic Acid; Eukaryota; Fatty Acids, Unsaturated; Humans; Inflammation; Interleukin-1beta; Leukocytes, Mononuclear; Male; Oils; Rats; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha

2010
Biogenic synthesis, purification, and chemical characterization of anti-inflammatory resolvins derived from docosapentaenoic acid (DPAn-6).
    The Journal of biological chemistry, 2009, May-29, Volume: 284, Issue:22

    Enzymatically oxygenated derivatives of the omega-3 fatty acids cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) and cis-5,8,11,14,17-eicosapentaenoic acid, known as resolvins, have potent inflammation resolution activity (Serhan, C. N., Clish, C. B., Brannon, J., Colgan, S. P., Chiang, N., and Gronert, K. (2000) J. Exp. Med. 192, 1197-1204; Hong, S., Gronert, K., Devchand, P. R., Moussignac, R., and Serhan, C. N. (2003) J. Biol. Chem. 278, 14677-14687). Our objective was to determine whether similar derivatives are enzymatically synthesized from other C-22 fatty acids and whether these molecules possess inflammation resolution properties. The reaction of DHA, DPAn-3, and DPAn-6 with 5-, 12-, and 15-lipoxygenases produced oxylipins, which were identified and characterized by liquid chromatography coupled with tandem mass-spectrometry. DPAn-6 and DPAn-3 proved to be good substrates for 15-lipoxygenase. 15-Lipoxygenase proved to be the most efficient enzyme of the three tested for conversion of long chain polyunsaturated fatty acids to corresponding oxylipins. Since DPAn-6 is a major component of Martek DHA-S oil, we focused our attention on reaction products obtained from the DPAn-6 and 15-lipoxygenase reaction. (17S)-hydroxy-DPAn-6 and (10,17S)-dihydroxy-DPAn-6 were the main products of this reaction. These compounds were purified by preparatory high performance liquid chromatography techniques and further characterized by NMR, UV spectrophotometry, and tandem mass spectrometry. We tested both compounds in two animal models of acute inflammation and demonstrated that both compounds are potent anti-inflammatory agents that are active on local intravenous as well as oral administration. These oxygenated DPAn-6 compounds can thus be categorized as a new class of DPAn-6-derived resolvins.

    Topics: Animals; Anti-Inflammatory Agents; Arachidonate 15-Lipoxygenase; Cell Movement; Chromatography, Liquid; Docosahexaenoic Acids; Dose-Response Relationship, Drug; Edema; Fatty Acids, Unsaturated; Glycine max; Granulocytes; Isomerism; Kinetics; Leukocytes; Macrophages; Magnetic Resonance Spectroscopy; Mass Spectrometry; Mice; Rats; Solubility; Substrate Specificity; Sus scrofa

2009