docosahexaenoate and Breast-Neoplasms

docosahexaenoate has been researched along with Breast-Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for docosahexaenoate and Breast-Neoplasms

ArticleYear
Characterization of lovastatin-docosahexaenoate anticancer properties against breast cancer cells.
    Bioorganic & medicinal chemistry, 2014, Mar-15, Volume: 22, Issue:6

    Lovastatin (LOV) and docosahexaenoic acid (DHA), besides improving cardiovascular functions, are also known for their anticancer activities. However, use of these compounds for treating or preventing cancer is limited because of their efficacies. The approach pursued involved chemical linkage of these two chemotypes. A lovastatin-docosahexaenoate (LOV-DHA) conjugate was prepared and tested against selected breast tumor cells lines with differential expression of estrogen receptors (ER) and Heregulin-2 (Her-2). The LOV-DHA conjugate exhibited superior cytotoxic effects against ER(-)/Her-2(-) cell lines (MDA-MB-231 and MDA-MB-468), which were not observed with DHA or lovastatin alone, or in combination. Lovastatin supplementation arrested cells in the G₀/G₁ phase and enhanced expression levels of p21, whereas the conjugate did not demonstrate cell cycle arrest nor increased p21 expression. The LOV-DHA conjugate induced significant (P<0.05) apoptosis as low as 1 μM, whereas DHA and lovastatin were ineffective at this concentration. The growth inhibitory effects of lovastatin were reversed by the addition of mevalonate, whereas mevalonate had no effect on the LOV-DHA conjugate-induced growth inhibition in MDA-MB-231 cells. Furthermore, the LOV-DHA conjugates were stable in mouse serum and intracellularly in MDA-MB-231 cells. These data suggest that the LOV-DHA conjugate mediated its effects through a HMG-CoA reductase-independent pathway and exerted significantly (P<0.05) higher anticancer effects in breast cancer cells than lovastatin or DHA alone.

    Topics: Antineoplastic Agents; Apoptosis; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Docosahexaenoic Acids; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Humans; Lovastatin; Molecular Structure; Structure-Activity Relationship

2014
Characterization of anticancer properties of 2,6-diisopropylphenol-docosahexaenoate and analogues in breast cancer cells.
    Bioorganic & medicinal chemistry, 2010, Mar-01, Volume: 18, Issue:5

    The present study describes the characterization and evaluation of novel anticancer conjugates, 2,6-diisopropylphenol-docosahexaenoate (PP-DHA), and its analogues including 2,4-diisopropylphenol-docosahexaenoate (DIPP-DHA), 2-isopropylphenol-docosahexaenoate (IPP-DHA), 2-cyclohexanephenol-docosahexaenoate (CHP-DHA) and phenol-docosahexaenoate (P-DHA) on breast cancer cell lines. Representative breast cancer cell lines, based on estrogen alpha receptor (ER) and oncogene Her-2 expression, were used and include MDA-MB-231 (ER-negative, Her-2-negative), MCF-7 (ER-positive, Her-2-negative) AU565 (ER-negative, Her-2-positive) and MDA-MB-361 (ER-positive, Her-2-positive). The PP-DHA conjugate significantly inhibited cell growth and induced cell loss in the breast cancer cell lines similarly; however, this conjugate was not effective against normal mammary epithelial cells. The effect of various conjugates were in PP-DHA>IPP-DHA>DIPP-DHA>CHP-DHA>>P-DHA order. PP-DHA and IPP-DHA conjugates were stable in human and mouse serum. Furthermore, the non-hydrolyzable amide-linked conjugate analogues affected breast cancer cells in a manner similar to that of the ester-linked conjugates. This suggests that ester-linked PP-DHA and IPP-DHA conjugates were stable during treatment to breast cancer cells due to structural hindrance. PP-DHA did not affect PPARalpha or PPARgamma activities but its anticancer effects appear to be mediated in part though the inhibition of histone deacetylase (HDAC) activity. Further experiments are needed to confirm their molecular target and to test the effectiveness of these compounds in an in vivo model for their anticancer properties. In conclusion, these results suggest that the novel PP-DHA and IPP-DHA conjugates and their amide derivatives may be useful for the treatment of breast cancer.

    Topics: Animals; Antineoplastic Agents, Hormonal; Breast Neoplasms; Cell Line, Tumor; Docosahexaenoic Acids; Estrogen Receptor alpha; Female; Histone Deacetylases; Humans; Mice; Propofol; Receptor, ErbB-2

2010
Interference by naturally occurring fatty acids in a noncellular enzyme-based aromatase bioassay.
    Journal of natural products, 2006, Volume: 69, Issue:4

    Natural product drug discovery efforts frequently utilize noncellular screening assays. Fatty acids are commonly found in natural product extracts, and some have been shown to interfere with noncellular assays. Several pure fatty acids were tested using a noncellular aromatase assay, with the unsaturated analogues showing strong inhibitory activity, while the saturated analogues were inactive. Unsaturated fatty acids were further tested against SK-BR-3 hormone-independent human breast cancer cells that overexpress aromatase and were found to be inactive. In natural product screening efforts, especially using plant seeds, it is recommended that extracts active in noncellular bioassays should be dereplicated for the presence of fatty acids prior to bioassay-guided fractionation.

    Topics: Aromatase; Biological Products; Breast Neoplasms; Fatty Acids; Female; Humans; Microsomes; Placenta; Tumor Cells, Cultured

2006