dizocilpine-maleate has been researched along with Intracranial-Hypertension* in 2 studies
2 other study(ies) available for dizocilpine-maleate and Intracranial-Hypertension
Article | Year |
---|---|
Blocking NMDA receptors delays death in rats with acute liver failure by dual protective mechanisms in kidney and brain.
Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration. Topics: Animals; Blood-Brain Barrier; Body Temperature; Brain; Brain Edema; Cerebrovascular Circulation; Disease Progression; Dizocilpine Maleate; Drug Evaluation, Preclinical; Excitatory Amino Acid Antagonists; Galactosamine; Glomerular Filtration Rate; Hepatic Encephalopathy; Hyperammonemia; Intracranial Hypertension; Inulin; Kidney; Lactates; Liver Failure; Liver Regeneration; Male; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Time Factors | 2014 |
NOC/oFQ and NMDA contribute to piglet hypoxic ischemic hypotensive cerebrovasodilation impairment.
Previous studies have observed that hypotensive pial artery dilation was blunted after hypoxia-ischemia. In unrelated studies, the opioid nociceptin/orphanin FQ (NOC/oFQ) was observed to contribute to hypoxic ischemic impairment of N-methyl-D-aspartate (NMDA)-induced pial dilation. This study determined the contribution of NOC/oFQ and NMDA to hypoxic ischemic hypotensive cerebrovasodilation impairment in newborn pigs equipped with a closed cranial window. Global cerebral ischemia was produced via elevated intracranial pressure. Hypoxia decreased PO(2) to 33 +/- 3 mm Hg. Topical NOC/oFQ (10(-10) M), the cerebrospinal fluid concentration after hypoxia-ischemia, had no effect on pial artery diameter by itself but attenuated hypotension (mean arterial blood pressure decrease of 44 +/- 2%) -induced pial artery dilation (35 +/- 2% versus 22 +/- 3%). Hypotensive pial artery dilation was blunted by hypoxia-ischemia, but such dilation was partially protected by pretreatment with the putative NOC/oFQ receptor antagonist, [F/G] NOC/oFQ (1-13) NH(2) (10(-6) M; 29 +/- 2%, sham control; 7 +/- 2%, hypoxia-ischemia; and 13 +/- 2%, hypoxia-ischemia and [F/G] NOC/oFQ (1-13) NH(2)). Coadministration of the NMDA antagonist MK801 (10(-5) M) with NOC/oFQ(10(-10) M) partially prevented hypotensive pial dilation impairment. Similarly, pretreatment with MK801 partially protected hypoxic ischemia impairment of hypotensive pial dilation (35 +/- 2%, sham control; 7 +/- 1%, hypoxia-ischemia; 22 +/- 2%, hypoxia-ischemia + MK801). These data show that NOC/oFQ and NMDA contribute to hypoxic ischemic hypotensive cerebrovasodilation impairment. These data suggest that NOC/oFQ modulation of NMDA vascular activity also contributes to such hypotensive impairment. Topics: Animals; Animals, Newborn; Cerebrovascular Circulation; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Female; Glutamic Acid; Hypotension; Hypoxia-Ischemia, Brain; Intracranial Hypertension; Male; N-Methylaspartate; Narcotic Antagonists; Neuroprotective Agents; Nociceptin; Nociceptin Receptor; Opioid Peptides; Peptide Fragments; Pia Mater; Receptors, N-Methyl-D-Aspartate; Receptors, Opioid; Shock, Hemorrhagic; Swine; Vasodilation | 2002 |