dizocilpine-maleate has been researched along with Insulin-Coma* in 2 studies
2 other study(ies) available for dizocilpine-maleate and Insulin-Coma
Article | Year |
---|---|
Cerebral protection by AMPA- and NMDA-receptor antagonists administered after severe insulin-induced hypoglycemia.
Excitatory amino acids are implicated in the development of neuronal cell damage following periods of reversible cerebral ischemia or insulin-induced hypoglycemic coma. To explore the importance of glutamate receptor activation in the posthypoglycemic phase, we exposed rats to 20 min of insulin-induced severe hypoglycemia. The rats were treated immediately after the hypoglycemic insult with four regimes of glutamate receptor antagonists: (1) the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propriate)-receptor antagonist NBQX [2.3-dihydroxy-6-nitro-7-sulfamoyl-benzo (F) quinoxaline] given as a bolus dose of 30 mg.kg-1 i.p., followed by an i.v. infusion of 225 micrograms.kg-1.min-1 for 6 h; (2) the non-competitive NMDA-receptor antagonist, dizocilpine (MK-801) 1 mg.kg-1 given i.v.; (3) a combined NBQX treatment, (a bolus dose of 10 mg.kg-1 i.p., followed by an i.v. infusion of 225 micrograms.kg-1.min-1 for 6 h), with dizocilpine 0.33 mg.kg-1 given twice i.p. at 0 and 15 min after recovery and (4) the competitive NMDA-receptor blocker CGP 40,116 [D-(E)-2-amino-4-methyl-5-phosphono-3- pentenoic acid] 10 mg.kg-1 given i.p. In the striatum, all glutamate receptor blockers significantly decreased neuronal damage by approximately 30%. An approximately 50% decrease in neuronal damage was demonstrated in neocortex and hippocampus following the combined treatment with NBQX and dizocilpine, while protection was variable following the treatment with a single glutamate-receptor antagonist.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 2-Amino-5-phosphonovalerate; Animals; Blood Pressure; Brain Ischemia; Cell Death; Dizocilpine Maleate; Electroencephalography; Excitatory Amino Acid Antagonists; Insulin Coma; Male; Necrosis; Neurons; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate | 1992 |
Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma.
In situ hybridization was used to study expression of mRNAs for members of the nerve growth factor (NGF) family in the rat brain after 2 and 10 min of forebrain ischemia and 1 and 30 min of insulin-induced hypoglycemic coma. Two hours after the ischemic insults, the level of brain-derived neurotrophic factor (BDNF) mRNA was markedly increased in the granule cells of the dentate gyrus, and at 24 h it was still significantly elevated. NGF mRNA showed a pronounced increase 4 h after 2 min of ischemia but had returned to a control level at 24 h. Both 2 and 10 min of ischemia caused a clear reduction of the level of mRNA for neurotrophin 3 (NT-3) in the dentate granule cells and in regions CA2 and medial CA1 of the hippocampus 2 and 4 h after the insults. The increase of BDNF mRNA could be partially blocked by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist NBQX but was not influenced by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801. Both NBQX and MK-801 attenuated the decrease of NT-3 mRNA after ischemia. One and 30 min of hypoglycemic coma also induced marked increases in BDNF and NGF mRNA in dentate granule cells with maximal levels at 2 h. If the changes of mRNA expression lead to alterations in the relative availability of neurotrophic factors, this could influence functional outcome and neuronal necrosis following ischemic and hypoglycemic insults. Topics: Animals; Brain; Brain-Derived Neurotrophic Factor; Dizocilpine Maleate; Gene Expression; Hippocampus; Insulin Coma; Ischemic Attack, Transient; Male; Nerve Growth Factors; Nerve Tissue Proteins; Neurotrophin 3; Nucleic Acid Hybridization; Proto-Oncogene Proteins c-fos; Quinoxalines; Rats; Rats, Inbred Strains; RNA, Messenger; Time Factors | 1992 |