dizocilpine-maleate and Brain-Injuries--Traumatic

dizocilpine-maleate has been researched along with Brain-Injuries--Traumatic* in 4 studies

Other Studies

4 other study(ies) available for dizocilpine-maleate and Brain-Injuries--Traumatic

ArticleYear
Further insights for the role of Morin in mRTBI: Implication of non-canonical Wnt/PKC-α and JAK-2/STAT-3 signaling pathways.
    International immunopharmacology, 2021, Volume: 100

    The slightly available data about the pathogenesis process of mild repetitive traumatic brain injury (mRTBI) indicates to the necessity of further exploration of mRTBI consequences. Several cellular changes are believed to contribute to the cognitive disabilities, and neurodegenerative changes observed later in persons subjected to mRTBI. We investigated glial fibrillary acidic protein (GFAP), the important severity related biomarker, where it showed further increase after multiple trauma compared to single one. To authenticate our aim, Morin (10 mg/kg loading dose, then twice daily 5 mg/kg for 7 days), MK-801 (1 mg/kg; i.p) and their combination were used. The results obtained has shown that all the chosen regimens opposed the upregulated dementia markers (Aβ1-40,p(Thr231)Tau) and inflammatory protein contents/expression of p(Ser53s6)NF-κBp65, TNF-α, IL-6,and IL-1β and the elevated GFAP in immune stained cortex sections. Additionally, they exerted anti-apoptotic activity by decreasing caspase-3 activity and increasing Bcl-2 contents. Saving brain tissues was evident after these therapeutic agents via upregulating the non-canonical Wnt-1/PKC-α cue and IL-10/p(Tyr(1007/1008))JAK-2/p(Tyr705)STAT-3 signaling pathway to confirm enhancement of survival pathways on the molecular level. Such results were imitated by correcting the injury dependent deviated behavior, where Morin alone or in combination enhanced behavior outcome. On one side, our study refers to the implication of two survival signaling pathways; viz.,the non-canonical Wnt-1/PKC-α and p(Tyr(1007/1008))JAK-2/p(Tyr705)STAT-3 in single and repetitive mRTBI along with distorted dementia markers, inflammation and apoptotic process that finally disrupted behavior. On the other side, intervention through affecting all these targets by Morin alone or with MK-801 affords a promising neuroprotective effect.

    Topics: Amyloid beta-Peptides; Animals; Apoptosis; Brain Injuries, Traumatic; Cerebral Cortex; Conditioning, Psychological; Dizocilpine Maleate; Fear; Flavonoids; Inflammation; Janus Kinase 2; Oligopeptides; Phosphopeptides; Protein Kinase C-alpha; Rats, Sprague-Dawley; Signal Transduction; STAT3 Transcription Factor; tau Proteins; Wnt1 Protein

2021
Long term neuroprotective effects of acute single dose MK-801treatment against traumatic brain injury in immature rats.
    Neuropeptides, 2021, Volume: 88

    Because brain development continues during adolescence, childhood trauma is a major health problem in pediatric ages. It is known traumatic brain injury (TBI) results in damage in hippocampal and cortical areas of the brain and impairs cognitive functions. The study aims to investigate the long-term effects of MK-801 (dizocilpine), an N-methyl d-aspartate (NMDA) receptor antagonist, on hippocampal damage, locomotor activity, and cognitive functions following TBI in immature rats. MK-801 (1 mg/kg) was injected intraperitoneally immediately after TBI. Thirty-seven litters were randomly allocated into three groups at 7 days (P7) of postnatal age: a control group, a trauma group, and an MK-801 treatment group. The control group received no treatment; the trauma group received saline as vehicle control for the MK-801 group and the MK-801 group received a single dose of 1 mg/kg MK-801 immediately after TBI. Hippocampal damage was examined by Hematoxylin-Eosin staining. Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), NMDA-R, and glial fibrillar acidic protein (GFAP) immunohistochemistry and, BDNF, NGF, and NMDA-R ELISA protein levels were evaluated 125 days after trauma. Histopathological and immunohistochemical evaluations showed that treatment with MK-801 significantly ameliorated the trauma-induced hippocampal neuron loss and increased BDNF, NGF, NMDA-R, GFAP expressions in CA1, CA3, and DG hippocampal regions. Additionally, treatment with MK-801 decreased anxiety and increased hippocampus-dependent memory of animals subjected to brain injury after TBI. These results show that acute treatment of MK-801 has a neuroprotective role against trauma-induced hippocampal neuron loss and associated cognitive impairment in rats.

    Topics: Animals; Brain; Brain Injuries, Traumatic; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Hippocampus; Neuroprotective Agents; Rats; Time

2021
A Novel Model of Traumatic Brain Injury in Adult Zebrafish Demonstrates Response to Injury and Treatment Comparable with Mammalian Models.
    Journal of neurotrauma, 2017, 04-01, Volume: 34, Issue:7

    Traumatic brain injury (TBI) is a leading cause of death and morbidity in industrialized countries with considerable associated health care costs. The cost and time associated with pre-clinical development of TBI therapeutics is lengthy and expensive with a poor track record of successful translation to the clinic. The zebrafish is an emerging model organism in research with unique technical and genomic strengths in the study of disease and development. Its high degree of genetic homology and cell signaling pathways relative to mammalian species and amenability to high and medium throughput assays has potential to accelerate the rate of therapeutic drug identification. Accordingly, we developed a novel closed-head model of TBI in adult zebrafish using a targeted, pulsed, high-intensity focused ultrasound (pHIFU) to induce mechanical injury of the brain. Western blot results indicated altered microtubule and neurofilament expression as well as increased expression of cleaved caspase-3 and beta APP (β-APP; p < 0.05). We used automated behavioral tracking software to evaluate locomotor deficits 24 and 48 h post-injury. Significant behavioral impairment included decreased swim distance and velocity (p < 0.05), as well as heightened anxiety and altered group social dynamics. Responses to injury were pHIFU dose-dependent and modifiable with MK-801, MDL-28170, or temperature modulation. Together, results indicate that the zebrafish exhibits responses to injury and intervention similar to mammalian TBI pathophysiology and suggest the potential for use to rapidly evaluate therapeutic compounds with high efficiency.

    Topics: Animals; Behavior, Animal; Brain Injuries, Traumatic; Cysteine Proteinase Inhibitors; Dipeptides; Disease Models, Animal; Dizocilpine Maleate; Female; Hypothermia, Induced; Male; Neuroprotective Agents; Ultrasonic Waves; Zebrafish

2017
In vitro and in vivo effects of a novel dimeric inhibitor of PSD-95 on excitotoxicity and functional recovery after experimental traumatic brain injury.
    The European journal of neuroscience, 2017, Volume: 45, Issue:2

    PSD-95 inhibitors have been shown to be neuroprotective in stroke, but have only to a very limited extent been evaluated in the treatment of traumatic brain injury (TBI) that has pathophysiological mechanisms in common with stroke. The aims of the current study were to assess the effects of a novel dimeric inhibitor of PSD-95, UCCB01-147, on histopathology and long-term cognitive outcome after controlled cortical impact (CCI) in rats. As excitotoxic cell death is thought to be a prominent part of the pathophysiology of TBI, we also investigated the neuroprotective effects of UCCB01-147 and related compounds on NMDA-induced cell death in cultured cortical neurons. Anesthetized rats were given a CCI or sham injury, and were randomized to receive an injection of either UCCB01-147 (10 mg/kg), the non-competitive NMDAR-receptor antagonist MK-801 (1 mg/kg) or saline immediately after injury. At 2 and 4 weeks post-trauma, spatial learning and memory were assessed in a water maze, and at 3 months, brains were removed for estimation of lesion volumes. Overall, neither treatment with UCCB01-147 nor MK-801 resulted in significant improvements of cognition and histopathology after CCI. Although MK-801 provided robust neuroprotection against NMDA-induced toxicity in cultured cortical neurons, UCCB01-147 failed to reduce cell death and became neurotoxic at high doses. The data suggest potential differential effects of PSD-95 inhibition in stroke and TBI that should be investigated further in future studies taking important experimental factors such as timing of treatment, dosage, and anesthesia into consideration.

    Topics: Animals; Brain; Brain Injuries, Traumatic; Cognition; Disease Models, Animal; Disks Large Homolog 4 Protein; Dizocilpine Maleate; Male; Memory; Motor Activity; Neurons; Neuroprotective Agents; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Recovery of Function

2017