discodermolide has been researched along with Lung-Neoplasms* in 6 studies
6 other study(ies) available for discodermolide and Lung-Neoplasms
Article | Year |
---|---|
Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells.
We have previously reported that the microtubule stabilizing agents (MSAs) paclitaxel, epothilone B and discodermolide induce caspase-independent cell death in non-small cell lung cancer (NSCLC) cells. Here we present two lines of evidence indicating a central role for the lysosomal protease cathepsin B in mediating cell death. First, inhibition of cathepsin B, and not of caspases or other proteases, such as cathepsin D or calpains, results in a strong protection against drug-induced cell death in several NSCLC cells. Second, MSAs trigger disruption of lysosomes and release and activation of cathepsin B. Interestingly, inhibition of cathepsin B prevents the appearance of multinucleated cells, an early characteristic of MSA-induced cell death, pointing to a central, proximal role for cathepsin B in this novel cell death pathway. Topics: Alkanes; Antineoplastic Agents; Apoptosis; Base Sequence; Carbamates; Carcinoma, Non-Small-Cell Lung; Caspases; Cathepsin B; Cell Death; DNA Primers; Epothilones; Humans; Lactones; Lung Neoplasms; Lysosomes; Microscopy, Fluorescence; Microtubules; Paclitaxel; Pyrones; Transfection; Tumor Cells, Cultured | 2004 |
Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells.
Discodermolide is a new microtubule-targeted antimitotic drug in Phase I clinical trials that, like paclitaxel, stabilizes microtubule dynamics and enhances microtubule polymer mass in vitro and in cells. Despite their apparently similar binding sites on microtubules, discodermolide acts synergistically with paclitaxel to inhibit proliferation of A549 human lung cancer cells (L. Martello et al., Clin. Cancer Res., 6: 1978-1987, 2000). To understand their synergy, we examined the effects of the two drugs singly and in combination in A549 cells and found that, surprisingly, their antiproliferative synergy is related to their ability to synergistically inhibit microtubule dynamic instability and mitosis. The combination of discodermolide and paclitaxel at their antiproliferative IC(50)s (7 nm for discodermolide and 2 nm for paclitaxel) altered all of the parameters of dynamic instability synergistically except the time-based rescue frequency. For example, together the drugs inhibited overall microtubule dynamicity by 71%, but each drug individually inhibited dynamicity by only 24%, giving a combination index (CI) of 0.23. Discodermolide and paclitaxel also synergistically blocked cell cycle progression at G(2)-M (41, 9.6, and 16% for both drugs together, for discodermolide alone, and for paclitaxel alone, respectively; CI = 0.59), and they synergistically enhanced apoptosis (CI = 0.85). Microtubules are unique receptors for drugs. The results suggest that ligands that bind to large numbers of binding sites on an individual microtubule can interact in a poorly understood manner to synergistically suppress microtubule dynamic instability and inhibit both mitosis and cell proliferation, with important consequences for combination clinical therapy with microtubule-targeted drugs. Topics: Alkanes; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Binding Sites; Carbamates; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Drug Synergism; G2 Phase; Humans; Inhibitory Concentration 50; Lactones; Lung Neoplasms; Microtubules; Mitosis; Paclitaxel; Pyrones | 2004 |
Late activation of apoptotic pathways plays a negligible role in mediating the cytotoxic effects of discodermolide and epothilone B in non-small cell lung cancer cells.
Discodermolide and epothilone B are promising novel chemotherapeutic agentsthat induce cell death through potent stabilization of microtubules. In this study, we investigated the cellular and molecular events underlying the cytotoxicity of these drugs in non-small cell lung carcinoma (NSCLC) cell lines, focusing on apoptotic characteristics. IC80 concentrations of either drug effectively disrupted the microtubule cytoskeleton of H460 cells and induced cell cycle disturbances with early accumulation in the G2-M phase and development of a hypodiploid cell population in both H460 and SW1573 cells. These events were followed by abnormal chromosome segregation during mitosis and subsequent appearance of multinucleated cells. At later time points, the cells displayed several apoptotic features, such as nuclear condensation and fragmentation as well as Annexin V staining, cleavage of poly(ADP-ribose) polymerase and the activation of caspases. To examine the contribution of apoptotic pathways to the cytotoxic effects of these agents, the involvement of the mitochondria and death receptor routes was studied. At 48 h after treatment, both agents disrupted mitochondria of H460 cells, as indicated by cytochrome c release. Nonetheless, H460 cells stably overexpressing antiapoptotic Bcl-2 or Bcl-xL did not show any protective effect from cell death induced by either drug. Possible death receptor dependency was investigated in H460 cells stably overexpressing dominant-negative FADD, which failed to reduce the cytotoxic effects of discodermolide and epothilone B. To study the role of caspases more directly, the effect of stable overexpression of the caspase-8 inhibitor cytokine response modifier A was studied in H460 cells. Furthermore, the effect of the pancaspase inhibitor z-Val-Ala-Asp-fluoromethyl ketone was investigated in a panel of lung carcinoma cell lines. Interestingly, caspase inhibition did not rescue cells from discodermolide or epothilone B-induced cell death. In conclusion, these results demonstrate that despite several apoptotic features detected at relatively late time points after drug exposure, apoptosis is not the dominant mode of cell death and induced low but efficacious concentrations of discodermolide and epothilone B. Topics: Alkanes; Antineoplastic Agents; Apoptosis; Carbamates; Carcinoma, Non-Small-Cell Lung; Caspase Inhibitors; Caspases; Epothilones; Humans; Inhibitory Concentration 50; Jurkat Cells; Lactones; Lung Neoplasms; Macrolides; Mitochondria; Pyrones; Receptors, Tumor Necrosis Factor; Tumor Cells, Cultured | 2002 |
Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs.
Although microtubule interacting agents inhibit spindle dynamics, thereby leading to a block in mitosis, we report that low concentrations of these drugs result in differential mitotic effects. Microtubule-stabilizing agents including Taxol, epothilone B, and discodermolide produce aneuploid populations of A549 cells in the absence of a mitotic block. Such aneuploid populations are diminished in an epothilone B-resistant cell line. In contrast, microtubule-destabilizing agents like colchicine, nocodazole, and vinblastine are unable to initiate aneuploidy. The aneuploid cells result from aberrant mitosis as multipolar spindles are induced by the stabilizing drugs, but not by destabilizing agents. The results suggest that the mechanism underlying aberrant mitosis may not be the same as that responsible for mitotic block, and that the former determines the sensitivity of cells to Taxol-like drugs. Topics: Alkanes; Aneuploidy; Antineoplastic Agents; Carbamates; Carcinoma, Non-Small-Cell Lung; Epothilones; Humans; Lactones; Lung Neoplasms; Macrolides; Microtubules; Mitosis; Paclitaxel; Pyrones; Spindle Apparatus; Tumor Cells, Cultured | 2002 |
Discodermolide: just another microtubule-stabilizing agent? No! A lesson in synergy.
Topics: Alkanes; Animals; Antineoplastic Agents; Carbamates; Drug Synergism; Humans; Lactones; Lung Neoplasms; Microtubules; Paclitaxel; Pyrones; Tumor Cells, Cultured | 2000 |
Taxol and discodermolide represent a synergistic drug combination in human carcinoma cell lines.
Recently, three natural products have been identified, the epothilones, eleutherobin, and discodermolide, whose mechanism of action is similar to that of Taxol in that they stabilize microtubules and block cells in the mitotic phase of the cell cycle. In this report, we have compared and contrasted the effects of these new agents in Taxol-sensitive and -resistant cell lines. We also have taken advantage of a human lung carcinoma cell line, A549-T12, that was isolated as a Taxol-resistant cell line and found to require low concentrations of Taxol (2-6 nM) for normal cell division. This study then examined the ability of these new compounds to substitute for Taxol in sustaining the growth of A549-T12 cells. Immunofluorescence and flow cytometry have both indicated that the epothilones and eleutherobin, but not discodermolide, can substitute for Taxol in this Taxol-dependent cell line. In A549-T12 cells, the presence of Taxol significantly amplified the cytotoxicity of discodermolide, and this phenomenon was not observed in combinations of Taxol with either the epothilones or eleutherobin. Median effect analysis using the combination index method revealed a schedule-independent synergistic interaction between Taxol and discodermolide in four human carcinoma cell lines, an effect that was not observed between Taxol and epothilone B. Flow cytometry revealed that concurrent exposure of A549 cells to Taxol and discodermolide at doses that do not induce mitotic arrest caused an increase in the hypodiploid population, thereby indicating that a possible mechanism for the observed synergy is the potentiation of apoptosis. Our results suggest that Taxol and discodermolide may constitute a promising chemotherapeutic combination. Topics: Alkaloids; Alkanes; Animals; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B; Carbamates; Cell Count; Cell Division; Cell Line; Cytoskeleton; Diterpenes; Dose-Response Relationship, Drug; Drug Synergism; Epothilones; Epoxy Compounds; Flow Cytometry; Humans; Lactones; Lung Neoplasms; Microtubules; Mitosis; Paclitaxel; Pyrones; Thiazoles; Tumor Cells, Cultured | 2000 |