dipyrromethene and Neoplasms

dipyrromethene has been researched along with Neoplasms* in 11 studies

Reviews

2 review(s) available for dipyrromethene and Neoplasms

ArticleYear
Tailoring nanoparticles based on boron dipyrromethene for cancer imaging and therapy.
    Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 2020, Volume: 12, Issue:4

    Boron dipyrromethene (BODIPY), as a traditional fluorescent dye, has drawn increasing attention because of its excellent photophysical properties like adjustable spectra and outstanding photostability. BODIPY dyes could be assembled into nanoparticles for cancer imaging and therapy via rational design. In this review, the bio-applications of BODIPY-containing nanoparticles are introduced in detail, such as cellular imaging, near-infrared fluorescence imaging, computed tomography imaging, photoacoustic imaging, phototherapy, and theranostics. The construction strategies of BODIPY-containing nanoparticles are emphasized so the review has three sections-self-assembly of small molecules, chemical conjugation with hydrophilic compounds, and physical encapsulation. This review not only summarizes various and colorific bio-applications of BODIPY-containing nanoparticles, but also provides reasonable design methods of BODIPY-containing nanoparticles for cancer theranostics. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging.

    Topics: Animals; Boron; Diagnostic Imaging; Drug Compounding; Humans; Nanoparticles; Neoplasms; Porphobilinogen

2020
Boron Dipyrromethene Nano-Photosensitizers for Anticancer Phototherapies.
    Small (Weinheim an der Bergstrasse, Germany), 2019, Volume: 15, Issue:32

    As traditional phototherapy agents, boron dipyrromethene (BODIPY) photosensitizers have attracted increasing attention due to their high molar extinction coefficients, high phototherapy efficacy, and excellent photostability. After being formed into nanostructures, BODIPY-containing nano-photosensitizers show enhanced water solubility and biocompatibility as well as efficient tumor accumulation compared to BODIPY molecules. Hence, BODIPY nano-photosensitizers demonstrate a promising potential for fighting cancer. This review contains three sections, classifying photodynamic therapy (PDT), photothermal therapy (PTT), and the combination of PDT and PTT based on BODIPY nano-photosensitizers. It summarizes various BODIPY nano-photosensitizers, which are prepared via different approaches including molecular precipitation, supramolecular interactions, and polymer encapsulation. In each section, the design strategies and working principles of these BODIPY nano-photosensitizers are highlighted. In addition, the detailed in vitro and in vivo applications of these recently developed nano-photosensitizers are discussed together with future challenges in this field, highlighting the potential of these promising nanoagents for new tumor phototherapies.

    Topics: Animals; Antineoplastic Agents; Boron; Humans; Neoplasms; Photosensitizing Agents; Phototherapy; Porphobilinogen

2019

Other Studies

9 other study(ies) available for dipyrromethene and Neoplasms

ArticleYear
Choline phosphate lipid-hitchhiked near-infrared BODIPY nanoparticles for enhanced phototheranostics.
    Journal of materials chemistry. B, 2023, 06-21, Volume: 11, Issue:24

    Phototheranostics integrating optical imaging and phototherapy has attracted extensive attention. Achieving nanophototherapeutics with near infrared (NIR)-light synchronously triggered photodynamic therapy (PDT) and photothermal therapy (PTT) is challenging. Herein, we develop a multifunctional theranostic nanoplatform prepared from the co-assembly of NIR boron dipyrromethene (BODIPY) with a cooperative D-π-A structure of a thiophene-BODIPY core and benzene-diethylamino, and a choline phosphate lipid. The as-fabricated nanoparticles (DBNPs) exhibited desirable NIR absorption, uniform spherical morphology and good colloidal stability. The elaborate molecular design and supramolecular assembly endowed DBNPs with desirable PDT and PTT activities. Upon 808 nm laser irradiation, the DBNPs efficiently generated active singlet oxygen and regional hyperpyrexia, with a photothermal conversion efficiency of 37.6%. The excellent PDT and PTT performance of DBNPs boosted the potent

    Topics: Boron; Humans; Lipids; Nanoparticles; Neoplasms; Optical Imaging; Phosphorylcholine

2023
Exploiting Cancer Vulnerabilities by Blocking of the DHODH and GPX4 Pathways: A Multifunctional Bodipy/PROTAC Nanoplatform for the Efficient Synergistic Ferroptosis Therapy.
    Advanced healthcare materials, 2023, Volume: 12, Issue:26

    Ferroptosis is a form of programmed cell death and plays an important role in many diseases. Dihydroorotate dehydrogenase (DHODH) and glutathione peroxidase 4 (GPX4) play major roles in cell resistance to ferroptosis. Therefore, inactivation of these proteins provides an excellent opportunity for efficient ferroptosis-based synergistic cancer therapy. In this study, a multifunctional nanoagent (BPN

    Topics: Boron; Dihydroorotate Dehydrogenase; Ferroptosis; Humans; Neoplasms

2023
Phenylthiol-BODIPY-based supramolecular metallacycles for synergistic tumor chemo-photodynamic therapy.
    Proceedings of the National Academy of Sciences of the United States of America, 2022, 07-19, Volume: 119, Issue:29

    The development of more effective tumor therapy remains challenging and has received widespread attention. In the past decade, there has been growing interest in synergistic tumor therapy based on supramolecular coordination complexes. Herein, we describe two triangular metallacycles (1 and 2) constructed by the formation of pyridyl boron dipyrromethene (BODIPY)-platinum coordination. Metallacycle 2 had considerable tumor penetration, as evidenced by the phenylthiol-BODIPY ligand imparting red fluorescent emission at ∼660 nm, enabling bioimaging, and transport visualization within the tumor. Based on the therapeutic efficacy of the platinum(II) acceptor and high singlet oxygen (

    Topics: Boron Compounds; Cell Line, Tumor; Coordination Complexes; Drug Synergism; Humans; Neoplasms; Photochemotherapy; Platinum; Porphobilinogen

2022
Boron Dipyrromethene-Based Phototheranostics for Near Infrared Fluorescent and Photoacoustic Imaging-Guided Synchronous Photodynamic and Photothermal Therapy of Cancer.
    The journal of physical chemistry letters, 2022, Sep-01, Volume: 13, Issue:34

    The regulation of photochemical properties of phototheranostics, especially the absorption, fluorescence, singlet oxygen (

    Topics: Boron; Boron Compounds; HeLa Cells; Humans; Nanoparticles; Neoplasms; Photoacoustic Techniques; Photothermal Therapy; Porphobilinogen

2022
Self-Assembled Aza-Boron-Dipyrromethene for Ferroptosis-Boosted Sonodynamic Therapy.
    Angewandte Chemie (International ed. in English), 2022, 10-10, Volume: 61, Issue:41

    The presence of apoptosis inhibition proteins renders the cancer cells resistant to apoptosis, severely compromising the antitumor efficacy of sonodynamic therapy (SDT). Here, an intelligent anticancer nanoplatform based on an Aza-boron-dipyrromethene dye (denoted as Aza-BDY) is elaborately established for ferroptosis augmented SDT through cysteine (Cys) starvation. After endocytosis by tumor cells, Aza-BDY serves as both a ferroptosis inducing agent and a sonosensitizer for tumor treatment. The specific Cys response facilitates the disruption of redox homeostasis and initiation of cellular ferroptosis. Meanwhile, the released sonosensitizer causes efficient SDT and augments ferroptosis under ultrasound irradiation. Detailed in vitro and in vivo investigations demonstrate that the synergistic effect of Cys depletion and singlet oxygen (

    Topics: Boron; Cell Line, Tumor; Cysteine; Ferroptosis; Humans; Nanoparticles; Neoplasms; Porphobilinogen; Reactive Oxygen Species; Singlet Oxygen

2022
A Hypoxia-Activated Prodrug Conjugated with a BODIPY-Based Photothermal Agent for Imaging-Guided Chemo-Photothermal Combination Therapy.
    ACS applied materials & interfaces, 2022, Sep-14, Volume: 14, Issue:36

    Hypoxia-activated prodrugs (HAPs) have drawn increasing attention for improving the antitumor effects while minimizing side effects. However, the heterogeneous distribution of the hypoxic region in tumors severely impedes the curative effect of HAPs. Additionally, most HAPs are not amenable to optical imaging, and it is difficult to precisely trace them in tissues. Herein, we carefully designed and synthesized a multifunctional therapeutic

    Topics: Azo Compounds; Boron; Boron Compounds; Camptothecin; Cell Line, Tumor; Humans; Hyperthermia, Induced; Hypoxia; Nanoparticles; Neoplasms; Phototherapy; Photothermal Therapy; Porphobilinogen; Prodrugs

2022
Ultra-small NIR J-aggregates of BODIPY for potent phototheranostics.
    Biomaterials science, 2022, Dec-20, Volume: 11, Issue:1

    Cancer phototheranostics that combines diagnosis with phototherapy has emerged as a new mode of precise treatment. Nevertheless, taking highly effective phototheranostics into consideration, it is still a tremendous challenge to design multifunctional photothermal agents (PTAs) that combine the features of intensive near-infrared (NIR) absorption/emission, high photothermal conversion efficiency (PCE) and preferable tumor accumulation. Herein, seeking a convenient method to facilitate absorption red-shift, promote the accumulation of drugs in tumors and heighten the PCE appears to be particularly important for cancer theranostics. In this work, heavy-atom-free boron dipyrromethene (BODIPY) was assembled with F127 to fabricate ultra-small J-aggregated nanoparticles (named as BNPs). Compared to free BODIPY, BNPs exhibited 63 nm redshifted absorption, deep-tissue fluorescence imaging, enhanced cellular uptake, preferable tumor accumulation, elevated PCE, excellent photothermal stability and water dispersibility.

    Topics: Boron; Cell Line, Tumor; Humans; Nanoparticles; Neoplasms; Theranostic Nanomedicine

2022
Dual Color Imaging from a Single BF
    International journal of medical sciences, 2021, Volume: 18, Issue:7

    Dual emissions at ~700 and 800 nm have been achieved from a single NIR-AZA fluorophore

    Topics: Animals; Endoscopy; Female; Fluorescent Dyes; HeLa Cells; Humans; Intraoperative Care; Intravital Microscopy; Lymph Nodes; Lymphatic Metastasis; Male; Models, Animal; Neoplasms; Optical Imaging; Porphobilinogen; Rats; Spectrophotometry, Infrared; Sus scrofa; Toxicity Tests, Subacute

2021
Design strategy for a near-infrared fluorescence probe for matrix metalloproteinase utilizing highly cell permeable boron dipyrromethene.
    Journal of the American Chemical Society, 2012, Aug-22, Volume: 134, Issue:33

    Near-infrared (NIR) fluorescence probes are especially useful for simple and noninvasive in vivo imaging inside the body because of low autofluorescence and high tissue transparency in the NIR region compared with other wavelength regions. However, existing NIR fluorescence probes for matrix metalloproteinases (MMPs), which are tumor, atherosclerosis, and inflammation markers, have various disadvantages, especially as regards sensitivity. Here, we report a novel design strategy to obtain a NIR fluorescence probe that is rapidly internalized by free diffusion and well retained intracellularly after activation by extracellular MMPs. We designed and synthesized four candidate probes, each consisting of a cell permeable or nonpermeable NIR fluorescent dye as a Förster resonance energy transfer (FRET) donor linked to the NIR dark quencher BHQ-3 as a FRET acceptor via a MMP substrate peptide. We applied these probes for detection of the MMP activity of cultured HT-1080 cells, which express MMP2 and MT1-MMP, by fluorescence microscopy. Among them, the probe incorporating BODIPY650/665, BODIPY-MMP, clearly visualized the MMP activity as an increment of fluorescence inside the cells. We then applied this probe to a mouse xenograft tumor model prepared with HT-1080 cells. Following intratumoral injection of the probe, MMP activity could be visualized for much longer with BODIPY-MMP than with the probe containing SulfoCy5, which is cell impermeable and consequently readily washed out of the tissue. This simple design strategy should be applicable to develop a range of sensitive, rapidly responsive NIR fluorescence probes not only for MMP activity, but also for other proteases.

    Topics: Animals; Boron Compounds; Cell Line, Tumor; Cell Membrane Permeability; Cell Survival; Fluorescence; Fluorescence Resonance Energy Transfer; Fluorescent Dyes; Humans; Matrix Metalloproteinases; Mice; Microscopy, Fluorescence; Neoplasms; Porphobilinogen; Whole Body Imaging

2012