diospyros has been researched along with Hypoxia* in 2 studies
2 other study(ies) available for diospyros and Hypoxia
Article | Year |
---|---|
High CO2/hypoxia-induced softening of persimmon fruit is modulated by DkERF8/16 and DkNAC9 complexes.
Most persimmon (Diospyros kaki) cultivars are astringent and require post-harvest deastringency treatments such as 95% CO2 (high-CO2 treatment) to make them acceptable to consumers. High-CO2 treatment can, however, also induce excessive softening, which can be reduced by adding 1-methylcyclopropene (1-MCP). Previous studies have shown that genes encoding the ETHYLENE RESPONSE FACTORS (ERFs) DkERF8/16/19 can trans-activate xyloglucan endotransglycosylase/hydrolase (DkXTH9), which encodes the cell wall-degrading enzyme associated with persimmon fruit softening. In this study, RNA-seq data between three treatments were compared, namely high-CO2, high-CO2+1-MCP, and controls. A total of 227 differentially expressed genes, including 17 transcription factors, were predicted to be related to persimmon post-deastringency softening. Dual-luciferase assays indicated that DkNAC9 activated the DkEGase1 promoter 2.64-fold. Synergistic effects on transcription of DkEGase1 that involved DkNAC9 and the previously reported DkERF8/16 were identified. Electrophoretic mobility shift assay indicated that DkNAC9 could physically bind to the DkEGase1 promoter. Bimolecular fluorescence complementation and firefly luciferase complementation imaging assays indicated protein-protein interactions between DkNAC9 and DkERF8/16. Based on these findings, we conclude that DkNAC9 is a direct transcriptional activator of DkEGase1 that can co-operate with DkERF8/16 to enhance fruit post-deastringency softening. Topics: Carbon Dioxide; Diospyros; Fruit; Gene Expression Regulation, Plant; Hypoxia; Plant Proteins | 2020 |
Two novel anoxia-induced ethylene response factors that interact with promoters of deastringency-related genes from persimmon.
A hypoxic environment is generally undesirable for most plants and stimulates anaerobic metabolism. It is a beneficial treatment, however, for the removal of astringency from persimmon to improve the fruit quality after harvest. High soluble tannins (SCTs) content is one of most important causes of astringency. High CO2 (95%) treatment effectively reduced SCTs in both "Mopan" and "Gongcheng-shuishi" persimmon fruit by causing increases in acetaldehyde. Using RNA-seq and realtime PCR, twelve ethylene response factor genes (DkERF11-22) were isolated and characterized, to determine those responsive to high CO2 treatment. Only two genes, DkERF19 and DkERF22, showed trans-activation effects on the promoters of deastringency-related genes pyruvate decarboxylase genes (DkPDC2 and DkPDC3) and the transcript levels of these genes was enhanced by hypoxia. Moreover, DkERF19 and the previously isolated DkERF9 had additive effects on activating the DkPDC2 promoter. Taken together, these results provide further evidence that transcriptome changes in the level of DkERF mRNAs regulate deastringency-related genes and their role in the mechanism of persimmon fruit deastringency is discussed. Topics: Carbon Dioxide; Diospyros; Ethylenes; Fruit; Gene Expression Regulation, Plant; Hypoxia; Promoter Regions, Genetic; Tannins; Transcription Factors | 2014 |