dinoprost and Proteinuria

dinoprost has been researched along with Proteinuria* in 27 studies

Trials

2 trial(s) available for dinoprost and Proteinuria

ArticleYear
Antiproteinuric effects of angiotensin receptor blockers: telmisartan versus valsartan in hypertensive patients with type 2 diabetes mellitus and overt nephropathy.
    Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 2008, Volume: 23, Issue:10

    Renin-angiotensin system blockade reduces proteinuria and prevents nephropathy progression in patients with type 2 diabetes mellitus (T2D). Experimental evidence demonstrates that angiotensin receptor blockers (ARBs) possess anti-inflammatory potential, which might contribute to reducing proteinuria and providing renoprotection.. We conducted a multicentre, double-blind, prospective, parallel-group non-inferiority study of 885 hypertensive [systolic blood pressure/diastolic blood pressure (SBP/DBP) >130/80 mmHg] patients with T2D, proteinuria (> or =900 mg/24 h) and serum creatinine (< or =3.0 mg/dl) who were randomized to once-daily telmisartan 80 mg or valsartan 160 mg; additional antihypertensive therapy was permitted. The primary endpoint was the change from baseline in the 24-h proteinuria after 12 months. Secondary endpoints included changes in 24-h albuminuria, estimated glomerular filtration rate (eGFR) and inflammatory parameters asymmetrical dimethylarginine (ADMA), high-sensitivity C-reactive protein (CRP) and urinary 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)).. Telmisartan and valsartan produced comparable reductions in 24-h urinary protein excretion rates: geometric mean reduction (95% confidence interval) [telmisartan, 33% (27-39%); valsartan, 33% (27-38%)]. No significant differences between treatments were seen in changes from baseline in 24-h urinary albumin excretion rate and eGFR at 12 months. With both treatments, greater renoprotection was seen among patients with better blood pressure control. No significant changes in ADMA or CRP were noted in either group after 12 months, but urinary 8-iso-PGF(2alpha) levels decreased by 14% with telmisartan and by 7% with valsartan (P = 0.040).. In patients with T2D, hypertension and overt nephropathy, the renoprotection afforded by telmisartan and valsartan appears similar, and the study was unable to show any effect beyond that due to blood pressure control. At doses used to treat hypertension, there is no evidence of inflammatory parameters being modified by ARBs in patients with more advanced kidney disease due to T2D.

    Topics: Adult; Aged; Angiotensin II Type 1 Receptor Blockers; Arginine; Benzimidazoles; Benzoates; Blood Pressure; C-Reactive Protein; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Dinoprost; Double-Blind Method; Female; Humans; Hypertension; Male; Middle Aged; Prospective Studies; Proteinuria; Renin-Angiotensin System; Telmisartan; Tetrazoles; Valine; Valsartan

2008
Renal prostaglandin E2 and F2 alpha synthesis during exercise: effects of indomethacin and sulindac.
    Medicine and science in sports and exercise, 1986, Volume: 18, Issue:6

    To assess the effects of acute exercise on renal prostaglandins E2 (PGE2) and F2 alpha (PGF2 alpha) synthesis, urine collections were obtained from six women before and after 30 min of treadmill exercise at approximately 80% of their maximal oxygen consumption. After receiving a placebo for 3 days, with acute exercise, there was a significant increase only in recovery urine PGE2 concentration. Due to a decline in urine volume, PGF2 excretion was unchanged and PGF2 alpha excretion was significantly decreased by exercise. Subjects repeated the tests after 3 d of indomethacin treatment (150 mg X d-1), a known renal prostaglandin (PG) inhibitor, and 3 d of sulindac (300 mg X d-1), a non-steroidal anti-inflammatory drug which may not inhibit renal PG synthesis. Pre-exercise urine PGE2 concentrations were decreased by indomethacin but not by sulindac, whereas, PGF2 alpha concentrations were decreased by both drugs. When compared to the control test, indomethacin and sulindac had different effects on pre-exercise urine/plasma osmolality ratios and free water clearances. Neither indomethacin nor sulindac influenced the decreases in free water clearances, which were observed during the placebo tests. Exercise proteinuria was significantly increased by indomethacin but not by sulindac. In conclusion, these data demonstrate that acute exercise may stimulate renal PGE2 synthesis. During exercise, renal PG synthesis attenuates protein excretion. There also appear to be differences between indomethacin and sulindac with regard to the effects on renal PG synthesis and kidney function.

    Topics: Adult; Clinical Trials as Topic; Dinoprost; Dinoprostone; Double-Blind Method; Female; Humans; Indenes; Indomethacin; Kidney; Physical Exertion; Prostaglandins E; Prostaglandins F; Proteinuria; Random Allocation; Sulindac

1986

Other Studies

25 other study(ies) available for dinoprost and Proteinuria

ArticleYear
Renoprotective Effects of a Highly Selective A3 Adenosine Receptor Antagonist in a Mouse Model of Adriamycin-induced Nephropathy.
    Journal of Korean medical science, 2016, Volume: 31, Issue:9

    The concentration of adenosine in the normal kidney increases markedly during renal hypoxia, ischemia, and inflammation. A recent study reported that an A3 adenosine receptor (A3AR) antagonist attenuated the progression of renal fibrosis. The adriamycin (ADX)-induced nephropathy model induces podocyte injury, which results in severe proteinuria and progressive glomerulosclerosis. In this study, we investigated the preventive effect of a highly selective A3AR antagonist (LJ1888) in ADX-induced nephropathy. Three groups of six-week-old Balb/c mice were treated with ADX (11 mg/kg) for four weeks and LJ1888 (10 mg/kg) for two weeks as following: 1) control; 2) ADX; and 3) ADX + LJ1888. ADX treatment decreased body weight without a change in water and food intake, but this was ameliorated by LJ1888 treatment. Interestingly, LJ1888 lowered plasma creatinine level, proteinuria, and albuminuria, which had increased during ADX treatment. Furthermore, LJ1888 inhibited urinary nephrin excretion as a podocyte injury marker, and urine 8-isoprostane and kidney lipid peroxide concentration, which are markers of oxidative stress, increased after injection of ADX. ADX also induced the activation of proinflammatory and profibrotic molecules such as TGF-β1, MCP-1, PAI-1, type IV collagen, NF-κB, NOX4, TLR4, TNFα, IL-1β, and IFN-γ, but they were remarkably suppressed after LJ1888 treatment. In conclusion, our results suggest that LJ1888 has a renoprotective effect in ADX-induced nephropathy, which might be associated with podocyte injury through oxidative stress. Therefore, LJ1888, a selective A3AR antagonist, could be considered as a potential therapeutic agent in renal glomerular diseases which include podocyte injury and proteinuria.

    Topics: Actins; Adenosine; Adenosine A3 Receptor Antagonists; Albuminuria; Animals; Body Weight; Creatinine; Dinoprost; Disease Models, Animal; Doxorubicin; Immunohistochemistry; Kidney; Kidney Diseases; Lipid Peroxidation; Male; Membrane Proteins; Mice; Mice, Inbred BALB C; NF-kappa B; Oxidative Stress; Plasminogen Activator Inhibitor 1; Proteinuria; Transforming Growth Factor beta1

2016
Dipeptidyl peptidase IV inhibitor protects against renal interstitial fibrosis in a mouse model of ureteral obstruction.
    Laboratory investigation; a journal of technical methods and pathology, 2014, Volume: 94, Issue:6

    Dipeptidyl peptidase IV (DPPIV) is an exopeptidase that modulates the function of several substrates, among which insulin-releasing incretin hormones are the most well known. DPPIV also modulate substrates involved in inflammation, cell migration, and cell differentiation. Although DPPIV is highly expressed in proximal renal tubular cells, the role of DPPIV inhibition in renal disease is not fully understood. For this reason, we investigated the effects of LC15-0444, a DPPIV inhibitor, on renal function in a mouse model of renal fibrosis. Eight-week-old C57/BL6 mice were subjected to unilateral ureteral obstruction (UUO) and were treated with LC15-0444 (a DPPIV inhibitor) at a dose of 150 mg/kg per day in food or vehicle for 14 days. DPPIV activity was significantly increased in obstructed kidneys, and reduced after treatment with LC15-0444. Administration of LC15-0444 resulted in a significant decrease in albuminuria, urinary excretion of 8-isoprostane, and renal fibrosis. DPPIV inhibition also substantially decreased the synthesis of several proinflammatory and profibrotic molecules, as well as the infiltration of macrophages. UUO significantly increased, and LC15-0444 markedly suppressed, levels of phosphorylated Smad2/3, TGFβ1, toll-like receptor 4, high-mobility group box-1, NADPH oxidase 4, and NF-κB. These results suggest that activation of DPPIV in the kidney has a role in the progression of renal disease and that targeted therapy inhibiting DPPIV may prove to be a useful new approach in the management of progressive renal disease, independent of mechanisms mediated by glucagon-like peptide-1.

    Topics: Animals; Cytokines; Dinoprost; Dipeptidyl-Peptidase IV Inhibitors; Fibrosis; Kidney; Kidney Diseases; Mice; Mice, Inbred C57BL; Oxidative Stress; Piperidones; Proteinuria; Pyrimidines; Statistics, Nonparametric; Ureteral Obstruction

2014
Long-term effects of moderate protein diet on renal function and low-grade inflammation in older adults with type 2 diabetes and chronic kidney disease.
    Nutrition (Burbank, Los Angeles County, Calif.), 2014, Volume: 30, Issue:9

    The aim of this study was to determine the long-term effects of a moderate protein diet (MPD) on renal function, low-grade inflammation, and oxidative stress in older adults with type 2 diabetes, which to date are unclear.. Seventy-four older adults with type 2 diabetes and chronic kidney disease (stage G3b-G4) were enrolled in the study. During the 4-wk baseline period (T0), all patients were asked to follow a normal protein diet regimen, providing 1.1 g/kg daily. Successively, all patients were asked to follow an MPD, for 36 mo, providing 0.7 g/kg daily, for only 6 d/wk. Patients who refused to follow an MPD treatment were included in the control (NPD [normal protein diet] group). During the 36 mo of the study, creatinine clearance, blood urea nitrogen, proteinuria, blood pressure, glycated hemoglobin (Hb)A1c, fat-free mass, low-grade inflammation (interleukin-6 and C-reactive protein) were evaluated monthly and oxidative stress (urinary 8-epiprostaglandin [Epi-PG]F2α) was evaluated every 3 mo.. During T0, mean creatinine clearance, proteinuria, blood urea nitrogen, blood pressure, HbA1c, fat free mass, low-grade inflammation, and oxidative stress were similar in both groups. After 36 mo, a significant reduction in decline of renal function was observed in the MPD group but not in controls (2.4 ± 0.2 versus 5.7 ± 0.5 mL·min·y, respectively; P < 0.05 versus control). Similarly, a significant reduction in proteinuria, serum interleukin-6, serum C-reactive protein, and urinary 8-Epi-PGF2α excretion, was observed in the MPD group (P < 0.05 versus NPD).. In older adults with type 2 diabetes, long-term effects of an MPD regimen are associated with a significant decline of renal function, proteinuria, low-grade inflammation, and oxidative stress without a change in fat-free mass.

    Topics: Aged; C-Reactive Protein; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Diet; Diet, Protein-Restricted; Dietary Proteins; Dinoprost; Female; Humans; Inflammation; Interleukin-6; Kidney; Male; Oxidative Stress; Patient Compliance; Proteinuria; Renal Insufficiency, Chronic; Time Factors

2014
Sex-specific effect of antenatal betamethasone exposure on renal oxidative stress induced by angiotensins in adult sheep.
    American journal of physiology. Renal physiology, 2014, Nov-01, Volume: 307, Issue:9

    Prenatal glucocorticoid administration in clinically relevant doses reduces nephron number and renal function in adulthood and is associated with hypertension. Nephron loss in early life may predispose the kidney to other insults later but whether sex influences increases in renal susceptibility is unclear. Therefore, we determined, in male and female adult sheep, whether antenatal glucocorticoid (betamethasone) exposure increased 8-isoprostane (marker of oxidative stress) and protein excretion after acute nephron reduction and intrarenal infusions of angiotensin peptides. We also examined whether renal proximal tubule cells (PTCs) could contribute to alterations in 8-isoprostane excretion in a sex-specific fashion. In vivo, ANG II significantly increased 8-isoprostane excretion by 49% and protein excretion by 44% in male betamethasone- but not in female betamethasone- or vehicle-treated sheep. ANG-(1-7) decreased 8-isoprostane excretion but did not affect protein excretion in either group. In vitro, ANG II stimulated 8-isoprostane release from PTCs of male but not female betamethasone-treated sheep. Male betamethasone-exposed sheep had increased p47 phox abundance in the renal cortex while superoxide dismutase (SOD) activity was increased only in females. We conclude that antenatal glucocorticoid exposure enhances the susceptibility of the kidney to oxidative stress induced by ANG II in a sex-specific fashion and the renal proximal tubule is one target of the sex-specific effects of antenatal steroids. ANG-(1-7) may mitigate the impact of prenatal glucocorticoids on the kidney. P47 phox activation may be responsible for the increased oxidative stress and proteinuria in males. The protection from renal oxidative stress in females is associated with increased SOD activity.

    Topics: Angiotensin I; Angiotensins; Animals; Betamethasone; Dinoprost; Female; Glucocorticoids; Kidney; Male; NADPH Oxidases; Oxidative Stress; Peptide Fragments; Pregnancy; Prenatal Exposure Delayed Effects; Proteinuria; Sex Factors; Sheep; Superoxide Dismutase

2014
Serelaxin reduces oxidative stress and asymmetric dimethylarginine in angiotensin II-induced hypertension.
    American journal of physiology. Renal physiology, 2014, Dec-15, Volume: 307, Issue:12

    Recent findings suggest the therapeutic action of relaxin during hypertension is dependent on nitric oxide synthase (NOS) activation; however, the mechanisms underlying the beneficial effects of relaxin on the NOS system have not been fully elucidated. We hypothesized that the protective effects of relaxin include reducing both oxidative stress and the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA). We examined the effect of Serelaxin [human recombinant relaxin-2 (RLX)] in male Sprague-Dawley rats given high-dose angiotensin (ANG) II (400 ng·kg(-1)·min(-1) sc) for 6 wk or shams. RLX was administered (4 μg/h sc) to half of the rats in each group after 2 wk of ANG II for the remaining 4 wk. ANG II induced hypertension and proteinuria, reduced NO oxidation products (NOx), and increased oxidative stress (NADPH oxidase activity, thiobarbituric acid-reactive substances, and 8-isoprostane excretion) and plasma ADMA. While RLX had no effect on sham rats, RLX attenuated the ANG II-dependent hypertension (165 ± 5 vs. 135 ± 13 mmHg, P < 0.05) and proteinuria at 6 wk (62 ± 6 vs. 41 ± 4 mg·day(-1)·100 g(-1), P < 0.05) and normalized oxidative stress and circulating ADMA, in association with restored NOx excretion and kidney cortex NOx. We found that RLX had no impact on the ADMA-regulatory enzymes protein arginine methyltransferase and dimethylarginine-dimethylaminohydrolase (DDAH). Furthermore, RLX treatment did not increase DDAH activity in kidney cortex or liver. These data suggest that benefits of RLX treatment include reduced ADMA levels and increased NO bioavailability, possibly due to its antioxidant effects.

    Topics: Angiotensin II; Animals; Antihypertensive Agents; Antioxidants; Arginine; Arterial Pressure; Dinoprost; Disease Models, Animal; Down-Regulation; Humans; Hypertension; Injections, Subcutaneous; Kidney; Liver; Male; NADPH Oxidases; Nitric Oxide; Oxidative Stress; Proteinuria; Rats, Sprague-Dawley; Recombinant Proteins; Relaxin; Thiobarbituric Acid Reactive Substances

2014
Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension.
    Free radical biology & medicine, 2012, Jan-01, Volume: 52, Issue:1

    Flavanol-rich diets have been reported to exert beneficial effects in preventing cardiovascular diseases, such as hypertension. We studied the effects of chronic treatment with epicatechin on blood pressure, endothelial function, and oxidative status in deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Rats were treated for 5 weeks with (-)-epicatechin at 2 or 10 mg kg(-1)day(-1). The high dose of epicatechin prevented both the increase in systolic blood pressure and the proteinuria induced by DOCA-salt. Plasma endothelin-1 and malondialdehyde levels and urinary iso-prostaglandin F(2α) excretion were increased in animals of the DOCA-salt group and reduced by the epicatechin 10 mg kg(-1) treatment. Aortic superoxide levels were enhanced in the DOCA-salt group and abolished by both doses of epicatechin. However, only epicatechin at 10 mg kg(-1) reduced the rise in aortic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and p47(phox) and p22(phox) gene overexpression found in DOCA-salt animals. Epicatechin increased the transcription of nuclear factor-E2-related factor-2 (Nrf2) and Nrf2 target genes in aortas from control rats. Epicatechin also improved the impaired endothelium-dependent relaxation response to acetylcholine and increased the phosphorylation of both Akt and eNOS in aortic rings. In conclusion, epicatechin prevents hypertension, proteinuria, and vascular dysfunction. Epicatechin also induced a reduction in ET-1 release, systemic and vascular oxidative stress, and inhibition of NADPH oxidase activity.

    Topics: Animals; Aorta; Blood Pressure; Catechin; Desoxycorticosterone; Dinoprost; Endothelin-1; Endothelium, Vascular; Hypertension; Male; Malondialdehyde; NADPH Oxidases; NF-E2-Related Factor 2; Nitric Oxide Synthase Type III; Oxidative Stress; Proteinuria; Rats; Rats, Wistar; Sodium Chloride, Dietary; Superoxides

2012
Eplerenone suppresses aldosterone/ salt-induced expression of NOX-4.
    Journal of the renin-angiotensin-aldosterone system : JRAAS, 2011, Volume: 12, Issue:3

    Salt-induced hypertension in the Dahl rat is associated with increases in angiotensin II, aldosterone, free radical generation and endothelial dysfunction. However, little is known about the specific mechanism(s) associated with the end-organ damage effects of aldosterone. We hypothesised that eplerenone reduces kidney damage by blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity.. Dahl salt-sensitive rats fed either a low-salt (LS) or high-salt (HS) diet were treated with aldosterone in the presence of eplerenone or apocynin. Indirect blood pressure was measured prior to start of diet and weekly thereafter. Levels of plasma nitric oxide (NO) and urinary 8-isoprostane were measured following treatment. Protein levels of selected subunits of NADPH were assessed by western blot.. Eplerenone and apocynin inhibited the rise in blood pressure induced by HS and/or aldosterone. This observation was accompanied with a parallel change in kidney protein levels of NADPH oxidase 4 (NOX-4) and p22phox. Aldosterone and high salt were associated with lower NO levels and greater renal oxidative stress.. NADPH oxidase is associated with the vascular and renal remodelling observed in high dietary salt intake. Aldosterone-induced expression of NOX-4 plays a pivotal role in the end-organ damage effect of aldosterone, as eplerenone tended to reduce kidney damage and inhibit NOX expression.

    Topics: Acetophenones; Aldosterone; Animals; Blood Pressure; Blotting, Western; Body Weight; Dinoprost; Eplerenone; Male; NADPH Oxidase 4; NADPH Oxidases; Nitric Oxide; Protein Subunits; Proteinuria; Rats; Rats, Inbred Dahl; Sodium; Sodium Chloride, Dietary; Spironolactone; Systole; Urinalysis

2011
AGE formation blockade with aminoguanidine does not ameliorate chronic allograft nephropathy.
    Life sciences, 2011, Sep-12, Volume: 89, Issue:11-12

    Advanced glycation end products (AGEs) are produced by glycoxidation and lipid peroxidation. AGEs induce oxidative stress and inflammation, and accumulate in tubular cells after kidney transplantation. We hypothesize that the AGE formation blocker aminoguanidine (AG) reduces AGE formation and improves renal transplant function.. Fisher 344 kidneys were orthotopically transplanted into Lewis recipients. Recipients were treated with AG (100 mg/kg/day), candesartan (CAND; 5mg/kg/day), or vehicle (VEH) for 24 weeks. The major non-cross linking AGE N(ε)-carboxymethyllysine (CML) was measured post-transplantation with gas chromatography-tandem mass spectrometry or immunohistochemistry. As a marker of systemic lipid peroxidation 8-isoprostane was measured by ELISA. We determined intra-arterial blood pressure, heart weight/body weight ratio, size of cardiomyocytes and cardiac hypertrophy as assessed by echocardiography. For biochemical evaluation of cardiac and renal fibrosis we measured hydroxyproline content.. AG significantly reduced serum CML and 8-isoprostane, but did not reduce signs of chronic allograft nephropathy (CAN) or blood pressure. AG did not alter tubular AGE accumulation. AG reduced heart weight/body weight ratio (AG: 2.7 ± 0.1g/kg; CAND: 2.2 ± 0.1, VEH: 3.0 ± 0.4 g/kg), size of cardiomyocytes (P < 0.05) and showed a tendency to reduce cardiac hypertrophy (wall volume average radial AG 7.072 ± 0.83 cm(3) vs. CAND 6.841 ± 0.66 cm(3) vs. VEH 7.839 ± 0.74 cm(3)).. Despite effective reduction of serum CML and 8-isoprostane, AG did not ameliorate CAN or reduce renal AGE accumulation. On the other hand AG reduced cardiac size suggesting a supportive cardio-protective action which is blood pressure independent.

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Benzimidazoles; Biphenyl Compounds; Cardiotonic Agents; Dinoprost; Enzyme Inhibitors; Glycation End Products, Advanced; Guanidines; Hydroxyproline; Kidney Diseases; Kidney Function Tests; Kidney Transplantation; Lysine; Male; Oxidative Stress; Proteinuria; Rats; Rats, Inbred F344; Rats, Inbred Lew; Tetrazoles; Time Factors; Transplantation, Homologous

2011
C-reactive protein is associated with cigarette smoking-induced hyperfiltration and proteinuria in an apparently healthy population.
    Hypertension research : official journal of the Japanese Society of Hypertension, 2010, Volume: 33, Issue:11

    Although cigarette smoking is known to be an important risk factor for renal disease, the mechanism by which smoking induces progressive renal disease in a healthy population has not been established. We hypothesized that oxidative stress (measured as 8-iso-prostaglandin F(2α), 8-iso-PGF2a), inflammation (highly sensitive C-reactive protein (CRP), hs-CRP) and nitric oxide may be associated with an alteration in the estimated glomerular filtration rate (eGFR) and proteinuria in otherwise healthy smokers. A total of 649 eligible subjects were classified according to their smoking status. Plasma NOx was measured using ozone-based chemiluminescence, urinary 8-iso-PGF2a was measured using enzyme immunoassay and serum hs-CRP was measured using a latex aggregation nephelometry method. The levels of 8-iso-PGF2a and hs-CRP increased in current smokers (P=0.001 and P=0.029, respectively), although there was not an increase in the NOx level. The prevalence of a high eGFR increased in light smokers (odds ratio (OR) 1.15 (95% confidence interval (CI), 0.61-2.17)) and heavy smokers (OR 2.33 (95% CI, 1.06-5.10)) when compared with non- and past smokers (P for trend=0.024). The multivariable-adjusted mean values of the eGFR in current smokers, reported from the lowest to the highest quintiles of hs-CRP levels, were 82.1, 85.1, 86.4 and 88.5 ml per min per 1.73 m² (P for trend=0.027). The mean values of proteinuria were 28.6, 34.6, 37.2 and 39.5 mg g⁻¹ creatinine (P for trend=0.003). The correlation coefficient between hs-CRP and eGFR was increased significantly (P=0.03) across non- (r=0.03), past (r=-0.17), light (r=0.13) and heavy smokers (r=0.31). In conclusion, cigarette smoking is a risk factor for renal function alteration in healthy smokers and is characterized by a high eGFR and a high urinary protein associated with an increase in the hs-CRP. This finding suggests that hs-CRP may help mediate the alteration of renal function in smokers.

    Topics: Adolescent; Adult; Aged; Biomarkers; C-Reactive Protein; Cross-Sectional Studies; Dinoprost; Female; Glomerular Filtration Rate; Humans; Kidney; Kidney Diseases; Kidney Function Tests; Life Style; Male; Middle Aged; Nitric Oxide; Proteinuria; Smoking; Young Adult

2010
SOD1 deficiency causes salt sensitivity and aggravates hypertension in hydronephrosis.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2009, Volume: 297, Issue:1

    Hydronephrosis causes renal dysfunction and salt-sensitive hypertension, which is associated with nitric oxide deficiency and abnormal tubuloglomerular feedback (TGF) response. We investigated the role of oxidative stress for salt sensitivity and for hypertension in hydronephrosis. Hydronephrosis was induced in superoxide dismutase 1-transgenic (SOD1-tg), SOD1-deficient (SOD1-ko), and wild-type mice and in rats. In mice, telemetric measurements were performed during normal (0.7% NaCl) and high-sodium (4% NaCl) diets and with chronic tempol supplementation. The 8-iso-prostaglandin-F(2alpha) (F2-IsoPs) and protein excretion profiles and renal histology were investigated. The acute effects of tempol on blood pressure and TGF were studied in rats. In hydronephrosis, wild-type mice developed salt-sensitive hypertension (114 +/- 1 to 120 +/- 2 mmHg), which was augmented in SOD1-ko (125 +/- 3 to 135 +/- 4 mmHg) but abolished in SOD1-tg (109 +/- 3 to 108 +/- 3 mmHg). SOD1-ko controls displayed salt-sensitive blood pressure (108 +/- 1 to 115 +/- 2 mmHg), which was not found in wild types or SOD1-tg. Chronic tempol treatment reduced blood pressure in SOD1-ko controls (-7 mmHg) and in hydronephrotic wild-type (-8 mmHg) and SOD1-ko mice (-16 mmHg), but had no effect on blood pressure in wild-type or SOD1-tg controls. SOD1-ko controls and hydronephrotic wild-type and SOD1-ko mice exhibited increased fluid excretion associated with increased F2-IsoPs and protein excretion. The renal histopathological changes found in hydronephrotic wild-type were augmented in SOD1-ko and diminished in SOD-tg mice. Tempol attenuated blood pressure and normalized TGF response in hydronephrosis [DeltaP(SF): 15.2 +/- 1.2 to 9.1 +/- 0.6 mmHg, turning point: 14.3 +/- 0.8 to 19.7 +/- 1.4 nl/min]. Oxidative stress due to SOD1 deficiency causes salt sensitivity and plays a pivotal role for the development of hypertension in hydronephrosis. Increased superoxide formation may enhance TGF response and thereby contribute to hypertension.

    Topics: Animals; Antioxidants; Biomarkers; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Cyclic N-Oxides; Dinoprost; Disease Models, Animal; Feedback, Physiological; Female; Hydronephrosis; Hypertension; Infusions, Intravenous; Kidney; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidative Stress; Proteinuria; Rats; Rats, Sprague-Dawley; Sodium Chloride, Dietary; Spin Labels; Superoxide Dismutase; Superoxide Dismutase-1; Telemetry; Urodynamics

2009
Ciglitazone, a peroxisome proliferator-activated receptor gamma inducer, ameliorates renal preglomerular production and activity of angiotensin II and thromboxane A2 in glycerol-induced acute renal failure.
    The Journal of pharmacology and experimental therapeutics, 2007, Volume: 322, Issue:2

    Peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear transcription factor, modulates vascular responses to angiotensin II (AII) or thromboxane A(2) (TxA(2)) via regulation of their gene/receptor. Increased vasoconstriction and deteriorating renal function in glycerol-induced acute renal failure (ARF) may be attributed to down-regulation of PPARgamma. In this study, we investigated the effect of ciglitazone (CG), a PPARgamma inducer, on AII and TxA(2) production and activity in glycerol-induced ARF. Vascular responses to AII or 9,11-dideoxy-11alpha,9alpha-epoxymethano prostaglandin F(2alpha) (U46619), a TxA(2) mimetic, were determined in preglomerular vessels following induction of ARF with glycerol. Renal damage and function were assessed in CG-treated (9 nmol/kg for 21 days) rats. PPARgamma protein expression and activity, which were significantly lower in ARF rats, were enhanced by CG (26 and 30%). CG also increased PPARgamma mRNA by 67 +/- 6%, which was reduced in ARF. In ARF, there was significant tubular necrosis and apoptosis, a 5-fold increase in proteinuria and a 2-fold enhancement in vasoconstriction to AII and U46619. CG reduced proteinuria (49 +/- 3%), enhanced Na(+) (124 +/- 35%) and creatinine excretion (92 +/- 25%), markedly diminished tubular necrosis, and reduced ARF-induced increase in AII (40 +/- 3%) and TxA(2) (39 +/- 2%) production, the attending increase in vasoconstriction to AII (36 +/- 2%) and U46619 (50 +/- 11%), and the increase in angiotensin receptor-1 (AT(1)) (23 +/- 3%) or thromboxane prostaglandin (TP) receptor (13 +/- 1%). CG reduced free radical generation by 55 +/- 14% while elevating nitrite excretion (65 +/- 13%). Our results suggest that enhanced activity of AII and TxA(2), increased AT(1) or TP receptor expression, and renal injury in glycerol-induced ARF are consequent to down-regulation of PPARgamma gene. CG ameliorated glycerol-induced effects through maintaining PPARgamma gene.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acute Kidney Injury; Angiotensin II; Animals; Creatinine; Dinoprost; Gene Expression; Glycerol; Hypoglycemic Agents; Kidney Glomerulus; Male; Nitric Oxide; Nitrites; PPAR gamma; Proteinuria; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptors, Thromboxane A2, Prostaglandin H2; Renal Artery; Sodium; Thiazolidinediones; Thromboxane A2; Thromboxane B2; Vasoconstriction

2007
Adenovirus-mediated gene transfer and lipoprotein-mediated protein delivery of plasma PAF-AH ameliorates proteinuria in rat model of glomerulosclerosis.
    Molecular therapy : the journal of the American Society of Gene Therapy, 2006, Volume: 13, Issue:1

    Oxidative stress has been proposed to play a crucial role in glomerulosclerosis, although its in vivo demonstration has proved taxing given the difficulty of inducing gene expression in specific renal cells. In this study, we examined whether the liver-directed expression of plasma platelet-activating factor acetylhydrolase (PAF-AH) would affect the glomerular pathophysiology in Imai rats, an animal model for glomerulosclerosis. Adenovirus-mediated liver-directed gene delivery of human PAF-AH resulted in a significant increase in plasma PAF-AH activity, which was detected almost exclusively on HDL. Histological examination of rats overexpressing PAF-AH showed not only the deposition of PAF-AH in mesangial cells, but also a reduction in hydroxynonenal and matrix protein content in the glomeruli. In situ hybridization analysis was negative for human PAF-AH mRNA in the kidney, while injection of HDL abundant in PAF-AH resulted in the deposition of PAF-AH in mesangial cells. Urine protein levels did not increase in rats overexpressing PAF-AH, while those of control rats increased significantly with age. This study provides direct evidence of the in vivo role of an enzyme that degrades lipid peroxides during the progression of glomerulosclerosis. Adenovirus-mediated extrarenal gene expression and lipoprotein-mediated glomeruli-targeted protein delivery promise to be a novel therapeutic approach to glomerulosclerosis.

    Topics: 1-Alkyl-2-acetylglycerophosphocholine Esterase; Adenoviridae; Animals; Aorta; Creatinine; Dinoprost; Disease Models, Animal; Gene Transfer Techniques; Glomerulosclerosis, Focal Segmental; In Situ Hybridization; Kidney Glomerulus; Lipid Peroxides; Lipoproteins, HDL; Liver; Male; Mesangial Cells; Oxidative Stress; Proteinuria; Rats; Rats, Sprague-Dawley

2006
Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress.
    Diabetes, 2006, Volume: 55, Issue:6

    p66(Shc) regulates both steady-state and environmental stress-dependent reactive oxygen species (ROS) generation. Its deletion was shown to confer resistance to oxidative stress and protect mice from aging-associated vascular disease. This study was aimed at verifying the hypothesis that p66(Shc) deletion also protects from diabetic glomerulopathy by reducing oxidative stress. Streptozotocin-induced diabetic p66(Shc) knockout (KO) mice showed less marked changes in renal function and structure, as indicated by the significantly lower levels of proteinuria, albuminuria, glomerular sclerosis index, and glomerular and mesangial areas. Glomerular content of fibronectin and collagen IV was also lower in diabetic KO versus wild-type mice, whereas apoptosis was detected only in diabetic wild-type mice. Serum and renal tissue advanced glycation end products and plasma isoprostane 8-epi-prostaglandin F2alpha levels and activation of nuclear factor kappaB (NF-kappaB) were also lower in diabetic KO than in wild-type mice. Mesangial cells from KO mice grown under high-glucose conditions showed lower cell death rate, matrix production, ROS levels, and activation of NF-kappaB than those from wild-type mice. These data support a role for oxidative stress in the pathogenesis of diabetic glomerulopathy and indicate that p66(Shc) is involved in the molecular mechanism(s) underlying diabetes-induced oxidative stress and oxidant-dependent renal injury.

    Topics: Adaptor Proteins, Signal Transducing; Albuminuria; Animals; Apoptosis; Caspase 3; Collagen Type IV; Creatine; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Dinoprost; Electrophoresis, Polyacrylamide Gel; Enzyme-Linked Immunosorbent Assay; Fibronectins; Gene Deletion; Glucose; Glycation End Products, Advanced; Immunohistochemistry; Kidney; Mice; Mice, Knockout; NF-kappa B; Oxidative Stress; Proteinuria; Reactive Oxygen Species; Shc Signaling Adaptor Proteins; Src Homology 2 Domain-Containing, Transforming Protein 1

2006
Prevention of hypertension and organ damage in 2-kidney, 1-clip rats by tetradecylthioacetic acid.
    Hypertension (Dallas, Tex. : 1979), 2006, Volume: 48, Issue:3

    Dietary lipids are reported to affect the blood pressure in both humans and experimental animal models with hypertension. In the present study, 2-kidney, 1-clip (2K1C) hypertensive rats were treated with the modified fatty acid tetradecylthioacetic acid (TTA) from the time of clipping or after hypertension was established. TTA treatment attenuated the development of hypertension and reduced established 2K1C hypertension. The mRNA level of renin in the clipped kidney and the plasma renin activity were markedly reduced, and the plasma angiotensin II level tended to decrease after TTA treatment. In addition, TTA reduced the mRNA level of angiotensinogen in white adipose tissue. Prevention of organ damage was demonstrated by normal urinary excretion of protein, maintained serum albumin, lower heart weight, and clearly reduced vascular, glomerular, and tubulointerstitial damage in the nonclipped kidney. Renal function was not affected as estimated by unchanged plasma creatinine. Furthermore, the serum levels of triacylglycerol and cholesterol were reduced by TTA. The serum fatty acid composition was changed, resulting in a favorable increase of oleic acid. However, the levels of all of the omega-3 fatty acids and of linoleic acid were reduced, and no change was seen in the level of arachidonic acid, but the urinary excretion of 8-iso-prostaglandin F2alpha was declined. In conclusion, TTA attenuated the development of hypertension, reduced established hypertension, and prevented the development of organ damage in 2K1C rats, possibly by reducing the amounts of the vasoconstrictors angiotensin II and 8-iso-prostaglandin F2alpha and by inducing a favorable increase of oleic acid in serum.

    Topics: Albuminuria; Angiotensin II; Animals; Blood Vessels; Dinoprost; Fatty Acids; Hypertension, Renovascular; Kidney; Liver; Male; Oleic Acid; Proteinuria; Rats; Rats, Wistar; Renin; RNA, Messenger; Sulfides; Vasoconstrictor Agents

2006
Effects of thiol antioxidant on reduced nicotinamide adenine dinucleotide phosphate oxidase in hypertensive Dahl salt-sensitive rats.
    Free radical biology & medicine, 2004, Dec-01, Volume: 37, Issue:11

    Recent studies implicate of reactive oxygen species (ROS) in hypertension; however, whether reactive oxygen species promote hypertensive derangements is not fully clear. We thus investigated the effects of an antioxidant, N-acetyl-L-cysteine, on hypertensive Dahl salt-sensitive rats. High-salt intake for 4 weeks markedly elevated systolic arterial pressure, urinary excretion of protein, 8-isoprostane, and H(2)O(2), and the enzyme activity of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase along with the elevated expression of its subunits gp91phox and p47phox at the levels of mRNA and protein. Supplement with N-acetyl-L-cysteine reduced the increase in systolic arterial pressure and counteracted the elevation of urinary excretion of protein, 8-isoprostane, and H(2)O(2), and the increases in NADPH oxidase activity/expression in high-salt-loaded Dahl salt-sensitive rats. N-acetyl-L-cysteine supplement ameliorated plasma and urinary levels of thromboxane B(2) (an end metabolite of thromboxane A(2)), associated with improvement of both the abnormal contraction and the impaired nitric oxide-dependent relaxation in renal arteries. These results revealed that oxidative stress mediates hypertensive changes in Dahl salt-sensitive rats, because thiol antioxidant N-acetyl-L-cysteine attenuated the augmentation of local ROS production by diminishing the elevation of NADPH oxidase expression and ameliorated renal/vascular hypertensive changes.

    Topics: Acetylcholine; Acetylcysteine; Animals; Antioxidants; Blood Pressure; Dinoprost; Endothelium, Vascular; Hydrogen Peroxide; Hypertension; Kidney Glomerulus; Male; NADPH Oxidases; Oxidative Stress; Proteinuria; Rats; Rats, Inbred Dahl; Sodium Chloride; Superoxides; Thromboxane B2; Up-Regulation

2004
Inhibition of COX-2 prevents hypertension and proteinuria associated with a decrease of 8-iso-PGF2alpha formation in L-NAME-treated rats.
    Journal of hypertension, 2003, Volume: 21, Issue:3

    The inhibition of nitric oxide (NO) exerts injurious effects on the cardiovascular system by several mechanisms, such as the activation of the renin-angiotensin system, oxidative stress, and inflammatory cytokines. We examined whether COX-2, an inducible isoform of cyclooxygenase, is associated with the pathogenesis observed in N(omega)-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats.. Three groups of 8-week-old male Sprague-Dawley rats were studied (n = 6 in each group): group 1, untreated controls; group 2, treated with L-NAME (1 g/l for 3 weeks, p.o.); and group 3, L-NAME co-treated with COX-2 inhibitor NS-398 (5 mg/kg per day, i.p.). The L-NAME-induced expression of COX-2 mRNA and protein was semi-quantified in the kidneys and the thoracic aorta. Urinary excretion of the prostaglandin 6-keto PGF(1alpha), thromboxane B2 (TXB2), and prostaglandin E2 (PGE2) was measured in the three groups. Moreover, urinary excretion of 8-iso-PGF(2alpha), a potent vasoconstricting arachidonic acid metabolite acting through thromboxane A (TXA) receptor activation, proposed recently as a marker of oxidative stress, was also measured.. L-NAME induced significant increases in systolic blood pressure (P< 0.01), urinary protein (P< 0.05), and renal excretion of 8-iso-PGF(2alpha)(P< 0.01), compared with the control. In L-NAME-treated rats, the levels of COX-2 mRNA and protein were more than 50% higher in the kidneys (P< 0.05), and six-fold higher in the thoracic aorta (P< 0.01) than in control rats. NS-398 significantly ameliorated an increase in systolic blood pressure (P< 0.01) and urinary protein (P< 0.05) induced by L-NAME.. These data indicate that an increase in COX-2 expression might have a hypertensive effect, partly associated with 8-iso-PGF(2alpha) formation in l-NAME-treated rats.

    Topics: Animals; Base Sequence; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Dinoprost; DNA, Complementary; F2-Isoprostanes; Hemodynamics; Hypertension; Isoenzymes; Kidney; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitrobenzenes; Prostaglandin-Endoperoxide Synthases; Proteinuria; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sulfonamides

2003
Indomethacin protects permeability barrier from focal segmental glomerulosclerosis serum.
    Kidney international, 2002, Volume: 61, Issue:2

    Eicosanoids are believed to play a role in the pathophysiology of several models of glomerular disease. The cyclooxygenase inhibitor indomethacin reduces proteinuria in patients with focal segmental glomerulosclerosis (FSGS) or other glomerular diseases. We have shown that sera of some patients with FSGS significantly increase glomerular albumin permeability (Palb) in an in vitro assay.. To determine the role of eicosanoids in the increased Palb caused by the FSGS factor, glomeruli were isolated from normal rats, preincubated with indomethacin, then incubated with FSGS serum or normal serum and Palb was calculated. To study the direct effect of individual eicosanoids on Palb, glomeruli were incubated with prostaglandin E2, prostaglandin F2alpha or a thromboxane A2 mimetic, and Palb was calculated. In the final set of experiments, normal glomeruli were preincubated with the thromboxane synthase inhibitor furegrelate, incubated with FSGS serum, and Palb was calculated.. Preincubation of isolated glomeruli with either the cyclooxygenase inhibitor indomethacin or the thromboxane synthase inhibitor furegrelate protected glomeruli from the increase in Palb caused by FSGS serum. Each of the three principal glomerular eicosanoids significantly increased Palb of isolated glomeruli.. These studies implicate a product of the cyclooxygenase pathway of arachidonic acid metabolism as mediating the increased Palb caused by FSGS serum in our in vitro assay and possibly the proteinuria seen in patients with FSGS.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Albumins; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acid; Benzofurans; Cell Membrane Permeability; Cyclooxygenase Inhibitors; Dinoprost; Dinoprostone; Enzyme Inhibitors; Glomerulosclerosis, Focal Segmental; Indomethacin; Kidney Glomerulus; Male; Proteinuria; Rats; Rats, Sprague-Dawley; Vasoconstrictor Agents

2002
Impact of antihypertensive therapy on the skeleton: effects of enalapril and AT1 receptor antagonist losartan in female rats.
    Physiological research, 2001, Volume: 50, Issue:4

    No data are available about the effects of AT1 receptor antagonist losartan on the skeleton and there is also little information on the activity of an ACE inhibitor enalapril on bone metabolism. It is widely believed that the vasculature plays an important role in bone remodeling under normal and pathological conditions. We treated 14-week-old female Wistar rats with losartan, enalapril or saline. Administration of the ACE inhibitor enalapril and angiotensin II antagonist losartan had no effect on total malondialdehyde (MDA) in the blood and on urinary excretion of some eicosanoids and their metabolites. The administration of enalapril and losartan in a dose recommended for the treatment of hypertension did not cause significant changes in bone density, the ash and mineral content or morphometric parameters of the femur compared to the values found in control female rats.

    Topics: 6-Ketoprostaglandin F1 alpha; Angiotensin Receptor Antagonists; Animals; Antihypertensive Agents; Bone Density; Dinoprost; Dinoprostone; Enalapril; F2-Isoprostanes; Female; Femur; Losartan; Proteinuria; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Thromboxane B2

2001
F(2)-isoprostanes mediate high glucose-induced TGF-beta synthesis and glomerular proteinuria in experimental type I diabetes.
    Kidney international, 2000, Volume: 58, Issue:5

    The recently discovered arachidonic acid derivatives, isoprostanes, are increased in pathological conditions associated with oxidative stress, such as diabetes. No role has yet been described for isoprostanes during the development of diabetic nephropathy. Cell culture in high ambient glucose has been used as a model in elucidating cellular mechanisms underlying diabetic nephropathy. Among the growth factors involved in the effect of high glucose, transforming growth factor-beta (TGF-beta) has been described as playing a key role in the development of nephropathy.. Streptozotocin-induced diabetic rats were supplemented in their diet with the antioxidant vitamin E (1000 U/kg diet). Blood and urine samples were taken to determine renal function and isoprostane concentration, as determined by gas chromatography/mass spectrometry. Glomerular mesangial and endothelial cells were cultured in high ambient glucose to determine the synthesis of isoprostanes and the role of isoprostanes in high glucose-induced synthesis of TGF-beta.. Streptozotocin-induced diabetic rats had marked increases in plasma levels and urinary excretion rates of F(2)-isoprostanes. Dietary supplementation with vitamin E normalized (plasma) and reduced (urine) isoprostane levels and, surprisingly, improved proteinuria and blood urea nitrogen (BUN) levels. High ambient glucose increased F(2)-isoprostane synthesis in glomerular endothelial and mesangial cells in culture. Incubation of glomerular cells with F(2)-isoprostanes stimulated the production of TGF-beta.. Increased F(2)-isoprostane synthesis during diabetes appears to be responsible in part for the increase in renal TGF-beta, a well-known mediator of diabetic nephropathy.

    Topics: Animals; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Dinoprost; Endothelium; F2-Isoprostanes; Glomerular Mesangium; Glucose; Kidney Glomerulus; Male; Mice; Mice, Inbred Strains; Proteinuria; Rats; Rats, Sprague-Dawley; Transforming Growth Factor beta

2000
Elevated level of free 8-iso-prostaglandin F2alpha in the decidua basalis of women with preeclampsia.
    American journal of obstetrics and gynecology, 1999, Volume: 181, Issue:5 Pt 1

    The prostaglandin-like compound 8-iso-prostaglandin F(2alpha) represents an index of oxidative stress and has the ability to induce endothelial derangement, platelet activation, and vasoconstriction. In women with preeclampsia the decidual spiral arteries contain lipid deposits (acute atherosis). Analogously to the elevated level of 8-iso-prostaglandin F(2alpha) demonstrated in atherosclerotic lesions, we hypothesized that 8-iso-prostaglandin F(2alpha) level would be elevated in preeclamptic decidua basalis tissues.. Decidua basalis tissues were obtained by vacuum aspiration and placental tissues were obtained by excision at cesarean delivery from 16 preeclamptic and 15 normal pregnancies. Total and free 8-iso-prostaglandin F(2alpha) concentrations were quantified with an enzyme immunoassay technique after lipid extraction and separation.. The content of free 8-iso-prostaglandin F(2alpha) in preeclamptic decidual tissues was found to be significantly elevated with respect to that in control tissues. The content of total 8-iso-prostaglandin F(2alpha) did not differ significantly between the groups in either placenta or decidua basalis.. We propose that free 8-iso-prostaglandin F(2alpha) released from the decidua basalis in preeclampsia may mediate maternal vascular dysfunction and platelet activation.

    Topics: Adult; Birth Weight; Blood Pressure; Body Mass Index; Decidua; Dinoprost; F2-Isoprostanes; Female; Humans; Infant, Newborn; Parity; Placenta; Pre-Eclampsia; Pregnancy; Proteinuria; Time Factors

1999
[Effect of losartan and enalapril on urinary excretion of 8-isoprostane in experimental nephrotic syndrome].
    Casopis lekaru ceskych, 1999, Oct-20, Volume: 138, Issue:18

    Increased permeability of glomerular capillary wall in adriamycin nephropathy may be mediated by increased generation of free radicals and possibly also by the non-enzymatic production of isoprostanes induced by oxidative stress. ACE inhibitors may reduce proteinuria, possibly due to the decrease of intraglomerular pressure and increased permselectivity of the glomerular capillary wall. These effects may be partly mediated by the inhibition of the degradation of kinins. It is not clear if newly available angiotensin II antagonists have the same antiproteinuric and renoprotective effects.. We compared the effect of an ACE inhibitor (enalapril, 0.4 mg/kg bw i.p. daily for 3 weeks) and angiotensin II antagonist (losartan, 2 mg/kg bw in the same way) on experimental nephrotic syndrome induced in rats by the administration of adriamycin (5 mg/kg bw i.v. in a single dose). To elucidate the potential differences between these two drugs we also measured total malondialdehyde in blood and urinary excretion some eicosanoids and their metabolites (TxB2, 6-keto-PGF1alfa, bicyclo-PGE2 and 8-isoprostane). Proteinuria increased in adriamycin treated rats after 3 weeks from 0.18 +/- 0.01 to 0.44 +/- 0.14 g/mmol creat, p < 0.01. This increase was not prevented by losartan (increase from 0.18 +/- 0.12 to 0.50 +/- 0.11 g/mmol creat, p < 0.05), but tended to be partly blunted by enalapril (increase from 0.20 +/- 0.10 to only 0.32 +/- 0.08 g/mmol creat, p < 0.05). Similarly there was no increase of serum cholesterol, only in enalapril treated rats. On the other hand, both losartan (1.27 +/- 0.13 vs. 1.91 +/- 0.30 mumol/l, p < 0.05) and enalapril (0.93 +/- 0.06 mumol/l, p < 0.001) prevented adriamycin induced increase of total MDA in serum, but urinary excretion of 8-isoprostane was increased in nephrotic rats treated by losartan compared to controls. Enalapril induced increase of urinary excretion of bicyclo-PGE2 (4.32 +/- 0.62 vs. 1.66 +/- 0.81 ng/mmol creat, p < 0.001) was possibly mediated by kinins. There was no significant difference in the urinary excretion of other eicosanoids between different groups, but proteinuria correlated positively with urinary excretion of 8-isoprostane (p < 0.01). Proteinuric rats had also significantly higher urinary excretion of 8-isoprostane than non-proteinuric rats (44.8 +/- 7.1 vs. 26.7 +/- 3.4 ng/mmol. creat, p < 0.05).. Our data suggest that proteinuria in adriamycin nephropathy may mainly depend on free radical generation and the formation of 8-isoprostane. Haemodynamic parameters (glomerular pressure) do not seem to be so important. The mild antiproteinuric effect of enalapril may suggest a contributory role of the inhibition of kinin degradation in this model of nephrotic syndrome.

    Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Dinoprost; Doxorubicin; Eicosanoids; Enalapril; F2-Isoprostanes; Losartan; Male; Nephrotic Syndrome; Proteinuria; Rats; Rats, Wistar

1999
[Chronic and acute effect of cycletanine in NO-dependent hypertensive pregnant rats].
    Archives des maladies du coeur et des vaisseaux, 1995, Volume: 88, Issue:8

    Decreased response to vasopressor agents characterizes pregnancy. Endothelium-derived relaxing factors and vasodilating prostaglandins play an important role in the vascular tone during pregnancy. Since inhibition of nitric oxide (NO) biosynthesis induced by NO2-arginine enriched diet produced hypertension we measured in vivo cardiovascular responses to PGF2 alpha, L-arginine (L-arg) and cicletanine (Cic, IPSEN, France) which enhances PGI2 production. From day 13 to day 20 of gestation 4 groups of female Wistar rats were fed NO2-arg (31 mg/kg/d), NO2-arg+Cic (10 mg/kg/d), Cic enriched or control diet (C). Mean arterial pressure (MAP) was measured via a carotid catheter in anesthetized rats. Injection of PGF2 alpha (50 micrograms/kg) in jugular vein significantly increased MAP in the NO2-arg group versus, NO2-arg+Cic, Cic and C group (+23.5 +/- 3.3 vs +15.7 +/- 2.2, +15.8 +/- 2.2 and +17 +/- 1.85 mmHg; p < 0.01). Injection of L-arg (100 mg/kg) or Cic (1 mg/kg) 5 min before PGF2 alpha produced no modification in MAP in C and Cic group. Likewise in NO2-arg group injection of L-arg or Cic produced a diminished pressor response to PGF2 alpha (+23.5 +/- 3.3 vs -17.5 +/- 1.7 mmHg; p < 0.05 and +15.2 +/- 2.4 mmHg; p < 0.01 respectively). In NO2-arg+Cic group, only injection of Cic induced a diminished pressor response to PGF2 alpha which is more important without L-arg (+15.7 +/- 2.2 vs +9.1 +/- 1.3 mmHg; p < 0.001) or with L-arg (+13.6 +/- 1.5 vs +9.1 +/- 1.3 mmHg; p < 0.01). Cicletanine also significantly diminished the proteinuria in the NO2-arg+Cic group versus NO2-arg group (13.9 +/- 4.36 vs 63.4 +/- 21.6 mmHg; p < 0.01). IN CONCLUSION, chronic NO synthesis inhibition enhanced blood pressure and pressor responses to PGF2 alpha during pregnancy in rats. Chronic administration of cicletanine in Wistar pregnant rats decreases the response to vasopressor agents like PGF2 alpha. Moreover acute and chronic administration of cicletanine blunted the pressor effect, which was lower than in normal gestation.

    Topics: Animals; Antihypertensive Agents; Arginine; Blood Pressure; Dinoprost; Enzyme Inhibitors; Female; Hypertension; Nitric Oxide; Nitroarginine; Oxytocics; Pregnancy; Pregnancy Complications, Cardiovascular; Pregnancy, Animal; Prostaglandins F; Proteinuria; Pyridines; Rats; Rats, Wistar; Vasoconstriction

1995
Predominant functional roles for thromboxane A2 and prostaglandin E2 during late nephrotoxic serum glomerulonephritis in the rat.
    The Journal of clinical investigation, 1990, Volume: 85, Issue:6

    While much is known regarding acute nephrotoxic serum (NTS)-induced glomerular injury, the glomerular dynamics and pathophysiologic mediators of the more relevant chronic autologous phase remain poorly defined. Studies were performed in rats 14 d after injection of rabbit serum (n = 6), NTS in the absence (n = 6), or presence, of a cyclooxygenase inhibitor, ibuprofen (n = 6) or a thromboxane A2 (TxA2) receptor antagonist, L-670,596 (n = 5). A mesangial macrophage/monocyte infiltrate was noted with equal intensity in all NTS-treated rats. Glomerular generation rates of prostaglandin (PG) E2, PGF2a, and TxA2 in nephritic kidneys were dramatically increased as compared to controls. 2 wk after NTS, there was an increase in glomerular plasma flow rate (SNPF), attainment of filtration pressure disequilibrium, and augmentation of net transcapillary hydraulic pressure difference (delta P). Glomerular filtration rate (GFR), however, was reduced, due to a marked fall in the glomerular capillary ultrafiltration coefficient (Kf). Cyclooxygenase inhibition resulted in normalization of glomerular eicosanoid generation rates, amelioration of proteinuria, afferent vasoconstriction, and normalization of SNPF, delta P, Kf, and GFR. Selective antagonism of TxA2 also led to preservation of Kf, but was without effect on SNPF, thereby leading to elevated values for GFR. Thus, in contrast to the pathophysiologic role of arachidonate-lipoxygenase products in the early heterologous phase, PG-mediated vasodilatation and TxA2-induced reductions in Kf and GFR underlie glomerular functional changes during autologous mesangioproliferative glomerulonephritis.

    Topics: Animals; Blood Pressure; Dinoprost; Dinoprostone; Glomerular Filtration Rate; Glomerulonephritis; Hematocrit; Male; Platelet Activating Factor; Proteinuria; Rats; Thromboxane A2; Vascular Resistance

1990
[Mechanisms of the development of arterial hypertension in hypertonic nephritis].
    Terapevticheskii arkhiv, 1989, Volume: 61, Issue:6

    The patients suffering from hypertonic nephritis were examined for renal hemodynamics, the activity of the renin-angiotensin-aldosterone system (RAAS), excretion of PGE2 and PGF2 alpha, and for a number of the parameters of water-electrolyte homeostasis. In A series, the patients suffering from latent and hypertonic nephritis (n = 11 in each group) were compared. In B series, two groups of the patients (n = 13 in each group) suffering from hypertonic nephritis associated with moderate or grave arterial hypertension were compared. The patients under comparison belonging to A and B series did not differ as regards the sex, age, nephritis standing, serum creatinine or proteinuria. As compared with the patients suffering from latent nephritis (A series), the patients with hypertonic nephritis showed a lower effective renal plasma flow, a greater resistance of the renal vessels, lesser PGE2 secretion, and a higher serum sodium concentration. As compared with the patients suffering from moderate hypertension (B series), the patients with associated hypertonic nephritis and grave hypertension demonstrated a higher resistance of the renal vessels, a higher activity of plasma renin, a larger concentration of plasma aldosterone and its excretion with urine, as well as a greater volume of the circulating blood. It is assumed that the development of arterial hypertension associated with hypertonic nephritis may be caused by renal hemodynamics deterioration, by relative activation of the renin-angiotensin system, inhibition of the depressor prostaglandin system and sodium retention. The progression of hypertension may be related to further deterioration of renal hemodynamics attended by RAAS activation and hypervolemia.

    Topics: Creatinine; Dinoprost; Dinoprostone; Female; Hemodynamics; Humans; Hypertension; Hypertension, Renal; Male; Nephritis; Proteinuria; Renin-Angiotensin System; Water-Electrolyte Balance

1989
Urinary prostaglandin E2 and F2 alpha excretion in nephrotic syndrome during basal conditions, after water loading, and after remission of the syndrome.
    Acta medica Scandinavica, 1988, Volume: 224, Issue:1

    The urinary excretion rate of prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2 alpha) was determined in patients with the nephrotic syndrome both before and after an oral water load in 21 patients and 17 control subjects, and before and after remission of the syndrome in 8 of the patients. In the nephrotic syndrome PGE2 excretion rate varied considerably during basal conditions, remission was accompanied by an increase in the PGE2 excretion, and both basal PGF2 alpha excretion rate and the normal response in PGF2 alpha water loading were reduced. A significant, positive correlation was found between urine flow rate and excretion rate of PGE2 in the periods with the largest urine flow rate in both patients and control subjects. It is suggested that a relatively suppressed renal prostaglandin production may be a pathogenetic factor for sodium and water retention in the nephrotic syndrome, although it cannot be excluded that the abnormal prostaglandin excretion pattern is secondary, at least partially, to the reduction of urine flow rate.

    Topics: Adult; Aged; Blood Pressure; Body Water; Dinoprost; Dinoprostone; Drinking; Female; Humans; Male; Middle Aged; Nephrotic Syndrome; Prostaglandins E; Prostaglandins F; Proteinuria; Urodynamics

1988