dinoprost and Airway-Remodeling

dinoprost has been researched along with Airway-Remodeling* in 3 studies

Other Studies

3 other study(ies) available for dinoprost and Airway-Remodeling

ArticleYear
iNOS Inhibition Reduces Lung Mechanical Alterations and Remodeling Induced by Particulate Matter in Mice.
    Pulmonary medicine, 2019, Volume: 2019

    Topics: Airway Remodeling; Animals; Collagen; Dinoprost; Elastic Tissue; Imines; Lung; Macrophages; Mice, Inbred C57BL; Models, Animal; Neutrophils; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Particulate Matter

2019
Late intervention with a myeloperoxidase inhibitor stops progression of experimental chronic obstructive pulmonary disease.
    American journal of respiratory and critical care medicine, 2012, Jan-01, Volume: 185, Issue:1

    Inflammation and oxidative stress are linked to the deleterious effects of cigarette smoke in producing chronic obstructive pulmonary disease (COPD). Myeloperoxidase (MPO), a neutrophil and macrophage product, is important in bacterial killing, but also drives inflammatory reactions and tissue oxidation.. To determine the role of MPO in COPD.. We treated guinea pigs with a 2-thioxanthine MPO inhibitor, AZ1, in a 6-month cigarette smoke exposure model, with one group receiving compound from Smoking Day 1 and another group treated after 3 months of smoke exposure.. At 6 months both treatments abolished smoke-induced increases in lavage inflammatory cells, largely ameliorated physiological changes, and prevented or stopped progression of morphologic emphysema and small airway remodeling. Cigarette smoke caused a marked increase in immunohistochemical staining for the myeloperoxidase-generated protein oxidation marker dityrosine, and this effect was considerably decreased with both treatment arms. Serum 8-isoprostane, another marker of oxidative stress, showed similar trends. Both treatments also prevented muscularization of the small intrapulmonary arteries, but only partially ameliorated smoke-induced pulmonary hypertension. Acutely, AZ1 prevented smoke-induced increases in expression of cytokine mediators and nuclear factor-κB binding.. We conclude that an MPO inhibitor is able to stop progression of emphysema and small airway remodeling and to partially protect against pulmonary hypertension, even when treatment starts relatively late in the course of long-term smoke exposure, suggesting that inhibition of MPO may be a novel and useful therapeutic treatment for COPD. Protection appears to relate to inhibition of oxidative damage and down-regulation of the smoke-induced inflammatory response.

    Topics: Airway Remodeling; Animals; Dinoprost; Disease Models, Animal; Disease Progression; Enzyme Inhibitors; Female; Guinea Pigs; Hypertension, Pulmonary; Inflammation; Lung; Oxidative Stress; Peroxidase; Pulmonary Disease, Chronic Obstructive; Purines; Smoking; Thiones; Thioxanthenes; Tyrosine

2012
Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation.
    American journal of physiology. Lung cellular and molecular physiology, 2012, Dec-01, Volume: 303, Issue:11

    Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E(NO)) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E(NO) concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-β, NF-κB, IFN-γ, and 8-iso-prostaglandin F2α contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.

    Topics: Airway Remodeling; Airway Resistance; Amides; Animals; Anti-Asthmatic Agents; Asthma; Collagen; Dinoprost; Drug Evaluation, Preclinical; Elastic Tissue; Elasticity; Eosinophils; Extracellular Matrix; Guinea Pigs; Inhalation; Interleukin-2; Lung; Male; Matrix Metalloproteinase 9; Nitric Oxide; Nitric Oxide Synthase Type II; Oxidative Stress; Pyridines; rho-Associated Kinases

2012