dinitrobenzenes has been researched along with Glioma* in 3 studies
3 other study(ies) available for dinitrobenzenes and Glioma
Article | Year |
---|---|
Differential cellular regulation of the mitochondrial permeability transition in an in vitro model of 1,3-dinitrobenzene-induced encephalopathy.
Exposure to 1,3-dinitrobenzene (DNB) is associated with neuropathologic changes in specific brainstem nuclei, mediated by oxidative stress and mitochondrial dysfunction. The expression of Bcl-2-family proteins as a function of sensitivity to 1, 3-dinitrobenzene (DNB)-induced mitochondrial permeability transition (MPT) was examined in C6 glioma and SY5Y neuroblastoma cells. Neuroblastoma cells were 10-fold more sensitive than glioma cells to DNB-induced decreases in mitochondrial reducing potential, measured by reduction of the tetrazolium compound, 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). The IC(50) values for DNB-related inhibition of MTT reduction were 107+/-25 microM in SY5Y cells and 1047+/-101 microM in C6 cells. Levels of reactive oxygen species (ROS) were increased in both SY5Y and C6 cells following DNB exposure by 4.6- and 6.0-fold above control, respectively. DNB caused abrupt depolarization of mitochondria in both neuroblastoma and glioma cells that was inhibited by trifluoperazine. The first order rate constants for mitochondrial depolarization were: C6, k=0.31+/-0.02 min(-1); SY5Y, k=0.14+/-0.01 min(-1). Onset of MPT occurred at 10-fold lower concentration of DNB in SY5Y cells than in C6 cells. The antioxidants, deferoxamine and alpha-tocopherol, effectively prevented DNB-induced MPT in C6 and SY5Y cells, suggesting involvement of ROS in the initiation of MPT. Exposure to DNB resulted in decreased cellular ATP content in SY5Y cells and efflux of mitochondrial calcium in both SY5Y and C6 cells, concurrent with onset of MPT. The expression of Bcl-2, Bcl-X(L), and Bax was evaluated in both cell types by Western blot analysis. C6 glioma cells strongly expressed Bcl-X(L) and only weakly expressed Bcl-2 and Bax, whereas SY5Y neuroblastoma cells expressed lower levels of Bcl-X(L) and higher levels of both Bcl-2 and Bax. Collectively, these results suggest that higher constitutive expression of Bcl-X(L), rather than Bcl-2, correlates with resistance to DNB-induced MPT in SY5Y and C6 cells and that differential regulation of the permeability transition pore may underlie the cell-specific neurotoxicity of DNB. Topics: Adenosine Triphosphate; Antioxidants; bcl-2-Associated X Protein; bcl-X Protein; Brain Diseases; Calcium; Deferoxamine; Dinitrobenzenes; Electrophysiology; Glioma; Humans; Mitochondria; Neuroblastoma; Oxidation-Reduction; Permeability; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Tetrazolium Salts; Thiazoles; Trifluoperazine; Tumor Cells, Cultured; Vitamin E | 2000 |
Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors.
Optical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding), have been produced for intracellular measurements of pH and calcium. Five varieties of pH-sensitive sensors and three different calcium-selective sensors are presented and discussed. Each sensor combines an ion-selective fluorescent indicator and an ion-insensitive internal standard entrapped within an acrylamide polymeric matrix. Calibrations and linear ranges are presented for each sensor. The photobleaching of dyes incorporated into PEBBLEs is comparable to that of the respective free dye that is incorporated within the matrix. These PEBBLE sensors are fully reversible over many measurements. The leaching of fluorescent indicator from the polymer is less than 50% over a 48-h period (note that a typical application time is only a few hours). The PEBBLE sensors have also been applied to intracellular analysis of the calcium flux in the cytoplasm of neural cells during the mitochondrial permeability transition. Specifically, a distinct difference is noted between cells of different types (astrocyte vs neuron-derived cells) with respect to their response to the toxicant m-dinitrobenzene (DNB). Use of PEBBLE sensors permits the quantitative discrimination of subtle differences between the ability of human SY5Y neuroblastoma and C6 glioma to respond to challenge with DNB. Specifically, measurement of intracellular calcium, the precursor to cell death, has been achieved. Topics: Calcium; Calibration; Cell Membrane Permeability; Coloring Agents; Dinitrobenzenes; Fluoresceins; Fluorescent Dyes; Glioma; Humans; Hydrogen-Ion Concentration; Intracellular Membranes; Microscopy, Confocal; Mitochondria; Neuroblastoma; Optics and Photonics; Organic Chemicals; Photochemistry; Prostheses and Implants; Tumor Cells, Cultured | 1999 |
Internalization of microbubbles by tumor cells in vivo and in vitro.
Lipid-coated microbubbles (LCM) administered intravenously (i.v.) to rats bearing brain tumor, specifically enhance tumor visualization by ultrasound [1]. In order to understand the basis for this observation, we have examined the interactions of LCM with glioblastoma (C6) and gliosarcoma (9L) tumor cells in vivo and in vitro. LCM and LCM labeled with the fluorescent lipophilic dye 3,3'-dioctadecyloxacarbocyanine perchlorate (diO) were administered to rats bearing brain tumor. LCM and diO-labeled LCM were found principally at the tumor site with no evidence of label in the surrounding normal brain tissue. Analysis of the tumor by confocal laser scanning microscopy revealed that labeled LCM were inside the tumor cells. Similar analysis of LCM interactions with C6 and 9L cells in culture showed that LCM first adsorb at the surface of the cells, and with time became localized inside the cells. Binding and internalization proceeded faster at 37 degrees C than at room temperature (RT). Staining of live cells with N-(3-((2,4-dinitrophenyl)amino)propyl)-N-(3-aminopropyl) methylamine dihydrochloride (DAMP), a dye that recognizes acidic compartments, showed that the majority of internalized LCM was associated with compartments containing DAMP. If the same uptake mechanism were operative in vivo, it would indicate that a portion of LCM bypasses the reticuloendothelial system and become endocytosed directly by tumor cells. Topics: Animals; Brain Neoplasms; Carbocyanines; Craniotomy; Dinitrobenzenes; Endocytosis; Fluorescent Dyes; Glioma; Gliosarcoma; Liposomes; Microscopy, Confocal; Microscopy, Fluorescence; Microspheres; Neoplasm Transplantation; Organelles; Rats; Rats, Inbred F344; Rats, Sprague-Dawley; Staining and Labeling; Tumor Cells, Cultured | 1995 |