dimethylaminomicheliolide and Kidney-Diseases

dimethylaminomicheliolide has been researched along with Kidney-Diseases* in 3 studies

Other Studies

3 other study(ies) available for dimethylaminomicheliolide and Kidney-Diseases

ArticleYear
Renal Fibrosis Is Alleviated through Targeted Inhibition of IL-11-Induced Renal Tubular Epithelial-to-Mesenchymal Transition.
    The American journal of pathology, 2023, Volume: 193, Issue:12

    Renal fibrosis is a pathologic process that leads to irreversible renal failure without effective treatment. Epithelial-to-mesenchymal transition (EMT) plays a key role in this process. The current study found that aberrant expression of IL-11 is critically involved in tubular EMT. IL-11 and its receptor subunit alpha-1 (IL-11Rα1) were significantly induced in renal tubular epithelial cells (RTECs) in unilateral ureteral obstruction (UUO) kidneys, co-localized with transforming growth factor-β1. IL-11 knockdown ameliorated UUO-induced renal fibrosis in vivo and transforming growth factor-β1-induced EMT in vitro. IL-11 intervention directly induced the transdifferentiation of RTECs to the mesenchymal phenotype and increased the synthesis of profibrotic mediators. The EMT response induced by IL-11 was dependent on the sequential activation of STAT3 and extracellular signal-regulated kinase 1/2 signaling pathways and the up-regulation of metadherin in RTECs. Micheliolide (MCL) competitively inhibited the binding of IL-11 with IL-11Rα1, suppressing the activation of STAT3 and extracellular signal-regulated kinase 1/2-metadherin pathways, ultimately inhibiting renal tubular EMT and interstitial fibrosis induced by IL-11. In addition, treatment with dimethylaminomicheliolide, a pro-drug of MCL for in vivo use, significantly ameliorated renal fibrosis exacerbated by IL-11 in the UUO model. These findings suggest that IL-11 is a promising target in renal fibrosis and that MCL/dimethylaminomicheliolide exerts its antifibrotic effect by suppressing IL-11/IL-11Rα1 interaction and blocking its downstream effects.

    Topics: Epithelial-Mesenchymal Transition; Fibrosis; Humans; Interleukin-11; Kidney; Kidney Diseases; Mitogen-Activated Protein Kinase 3; Transcription Factors; Transforming Growth Factor beta1; Ureteral Obstruction

2023
ACT001 Alleviates chronic kidney injury induced by a high-fat diet in mice through the GPR43/AMPK pathway.
    Lipids in health and disease, 2023, Nov-18, Volume: 22, Issue:1

    Roughly 10 -15% of global populace suffer from Chronic Kidney Disease(CKD). A major secondary disease that can progress to end-stage renal disease (ESRD) is obesity-associated kidney disease (ORG). Although clinical management strategies are currently available, morbidity and mortality rates are increasing. Thus, new solutions are needed. Intestinal permeability, systemic inflammation, and aberrant intestinal metabolites have all been linked to ORG.. ACT001 has anti-inflammatory, redox-regulatory and antitumour activities. The current study was designed to examine how ACT001 affects ORG and analyze the fundamental processes.. A high-fat diet (HFD) was used to generate ORG in female C57BL/6 J mice. ORG mice were divided into three groups at random: HFD, HFD + ACT001, HFD + polyphosphocholine (PPC). To assess renal and colonic damage, periodic acid-Schiff (PAS) and hematoxylin-eosin (HE) staining were used. Following that, renal inflammation, oxidative stress, lipid deposition, colonic inflammation, and intestinal permeability were evaluated by protein blotting, polymerase chain reaction (PCR), immunohistochemistry, and immunofluorescence staining. Lastly, the SCFAs content was assessed by gas chromatographymass spectrometry.. Mice in the HFD group displayed more severe albuminuria, glomerular hypertrophy, renal oxidative damage, inflammation, and lipid accumulation than mice with the normal diet (ND) group, as well as lower levels of intestinal SCFA valproic acid, colonic inflammation, and tight junction protein downregulation. ACT001 treatment restores the content of valproic acid in intestinal SCFAs, promotes the binding of SCFAs to renal GPR43, activates the AMPK signalling pathway. Therefore, it promotes the Nrf2-Keap1 signalling pathway and inhibits the NF-κB signalling pathway. SCFAs, additionally, augment colonic GPR43 concentrations, diminishing NLRP3 inflammasome expression and restoring ZO-1 and occludin protein levels.. This study is the first to look at ACT001's potential as a treatment for obesity-related kidney disease. Regulating GPR43 and AMPK signalling pathways, By controlling the GPR43 and AMPK signalling pathways, ACT001 improves colitis and the intestinal mucosal barrier, decreases renal lipid deposition, and suppresses inflammation and oxidative stress in the kidneys. According to this study, ACT001 could be a viable ORG therapy option.

    Topics: AMP-Activated Protein Kinases; Animals; Diet, High-Fat; Female; Inflammation; Kelch-Like ECH-Associated Protein 1; Kidney; Kidney Diseases; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; Obesity; Valproic Acid

2023
Micheliolide ameliorates renal fibrosis by suppressing the Mtdh/BMP/MAPK pathway.
    Laboratory investigation; a journal of technical methods and pathology, 2019, Volume: 99, Issue:8

    Micheliolide (MCL), derived from parthenolide (PTL), is known for its antioxidant and anti-inflammatory effects and has multiple roles in inflammatory diseases and tumours. To investigate its effect on renal disease, we intragastrically administrated DMAMCL, a dimethylamino Michael adduct of MCL for in vivo use, in two renal fibrosis models-the unilateral ureteral occlusion (UUO) model and an ischaemia-reperfusion injury (IRI) model and used MCL in combination with transforming growth factor beta 1 (TGF-β1) on mouse tubular epithelial cells (mTEC) in vitro. The expression of fibrotic markers (fibronectin and α-SMA) was remarkably reduced, while the expression of the epithelial marker E-cadherin was restored after DMAMCL treatment both in the UUO and IRI mice. MCL function in TGF-β1-induced epithelial-mesenchymal transition (EMT) in mTEC was consistent with the in vivo results. Metadherin (Mtdh) was activated in the fibrotic condition, suggesting that it might be involved in fibrogenesis. Interestingly, we found that while Mtdh was upregulated in the fibrotic condition, DMAMCL/MCL could suppress its expression. The overexpression of Mtdh exerted a pro-fibrotic effect by modulating the BMP/MAPK pathway in mTECs, and MCL could specifically reverse this effect. In conclusion, DMAMCL/MCL treatment represents a novel and effective therapy for renal fibrosis by suppressing the Mtdh/BMP/MAPK pathway.

    Topics: Animals; Bone Morphogenetic Proteins; Cells, Cultured; Fibrosis; Kidney; Kidney Diseases; Male; MAP Kinase Signaling System; Membrane Proteins; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinases; Protective Agents; Reperfusion Injury; RNA-Binding Proteins; Sesquiterpenes, Guaiane; Ureteral Obstruction

2019