dimethylaminododecyl-methacrylate and Disease-Models--Animal

dimethylaminododecyl-methacrylate has been researched along with Disease-Models--Animal* in 3 studies

Other Studies

3 other study(ies) available for dimethylaminododecyl-methacrylate and Disease-Models--Animal

ArticleYear
Two-staged time-dependent materials for the prevention of implant-related infections.
    Acta biomaterialia, 2020, 01-01, Volume: 101

    Infection is a main cause of implant failure. Early implant-related infections often occur in the first 4 weeks post-operation. Inhibiting bacterial adhesion and biofilm formation at the early stage and promoting subsequent implant osseointegration are important for implant success. Our previous studies demonstrated that dimethylaminododecyl methacrylate (DMADDM) provided dental materials with antibacterial effects. In the present study, DMADDM and hydroxyapatite (HA) are loaded on to the titanium (Ti) surface via poly dopamine (PDA) self-polymerization. This local DMADDM-delivery Ti is referred as Ti-PHD. Here we report the two-staged capability of Ti-PHD: (1) in the first stage, releasing DMADDM during the high-infection-risk initial period post-implantation for 4 weeks; (2) then in the second stage, enhancing osteogenesis and promoting osseointegration. Ti-PHD has a porous surface with higher average roughness and greater hydrophilicity than pure Ti. Its biocompatibility is verified in vitro and in vivo. During the first 4 weeks of release, both DMADDM remaining on Ti surface and DMADDM released into the soaking medium greatly reduced the adherence and growth of pathogens. This is further confirmed by the prevention of bone destruction in a rat osteomyelitis model. After releasing DMADDM for 4 weeks, Ti-PHD promotes osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) and new bone formation around the implants in vivo. This article represents the first report on the two-staged, time-dependent antibacterial and osteogenesis effects of Ti-PHD, demonstrating its potential for clinical applications to inhibit implant-associated infections. STATEMENT OF SIGNIFICANCE: The present study develops a two-staged time-dependent system for local dimethylaminododecyl methacrylate (DMADDM) delivery via Ti implant (referred to as Ti-PHD). DMADDM and hydroxyapatite (HA) are loaded on to the Ti surface with poly dopamine (PDA). Ti-PHD can release DMADDM during the high-risk period of infection in the first stage, and then promote osseointegration and new bone formation in the second stage. This bioactive and therapeutic Ti is promising to inhibit infections and enhance implant success.

    Topics: Animals; Anti-Bacterial Agents; Bone Marrow Cells; Cells, Cultured; Disease Models, Animal; Durapatite; Female; Humans; Implants, Experimental; Mesenchymal Stem Cells; Methacrylates; Osteomyelitis; Prosthesis-Related Infections; Quaternary Ammonium Compounds; Rats; Rats, Sprague-Dawley; Titanium

2020
Dimethylaminododecyl methacrylate inhibits Candida albicans and oropharyngeal candidiasis in a pH-dependent manner.
    Applied microbiology and biotechnology, 2020, Volume: 104, Issue:8

    The prevalence of stomatitis, especially that caused by Candida albicans, has highlighted the need for new antifungal agents. We previously found that a type of quaternary ammonium salts, dimethylaminododecyl methacrylate (DMADDM), incorporated in dental materials inhibited the growth and hyphal development of C. albicans. However, how the quaternary ammonium salts inhibited the fungal pathogens and whether the oral condition, such as salivary pH variation under different diseases, can affect the antimicrobial capacity of quaternary ammonium salts is unknown. This study evaluated the antifungal effects of DMADDM at different pH in vitro and in vivo. A pH-dependent antifungal effect of DMADDM was observed in planktonic and biofilm growth. DMADDM enhanced antifungal activity at alkaline pH. Two pH-regulated genes (PHR1/PHR2) of C. albicans were correlated with the pH-dependent antifungal effects of DMADDM. The PHR1/PHR2 genes and pH values regulated the zeta potential of C. albicans, which then influenced the binding between C. albicans cells and DMADDM. The pH-dependent antifungal activity of DMADDM was then substantiated in a murine oropharyngeal candidiasis model. We directly demonstrated that the antifungal abilities of quaternary ammonium salts relied on the cell zeta potential which affected the binding between fungal cells and quaternary ammonium salts. These findings suggest a new antifungal mechanism of quaternary ammonium under different pH and that DMADDM can be a potential antifungal agent applied in dental materials and stomatitis therapy.Key Points • DMADDM has stronger antifungal activity in alkaline than in acidic pH conditions. • The pH values and pH-regulated genes can affect the zeta potential of fungal cells. • Zeta potential of fungal cells directly affect the binding between DMADDM and cells. Graphical abstract Schematic diagram of the antifungal activities of DMADDM at different pH values.

    Topics: Animals; Antifungal Agents; Biofilms; Candida albicans; Candidiasis; Dental Materials; Disease Models, Animal; Female; Hydrogen-Ion Concentration; Methacrylates; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Microbial Viability; Oropharynx; Quaternary Ammonium Compounds

2020
Evaluation of Novel Anticaries Adhesive in a Secondary Caries Animal Model.
    Caries research, 2018, Volume: 52, Issue:1-2

    We investigated the anticaries properties of an adhesive containing dimethylaminododecyl methacrylate (DMADDM) in vivo via a secondary caries animal model. Cavities were prepared in the maxillary first molars of Wistar rats. DMADDM-containing adhesives were applied on one side and commercial adhesives on the opposite side as a control. After a 3-week feeding period to induce secondary caries, the molars were harvested for the evaluation of the secondary caries. Lesion depth (LD) and mineral loss (ML) were measured via a micro-CT method, and a modified Keyes scoring method yielded scores for the caries lesions. Statistical analysis was divided into 2 parts: a correlation analysis between 2 evaluations with one-way ANOVA and a least-significant differences (LSD) test, and an evaluation of anticaries adhesives with a paired samples t test. The results showed that: (1) secondary caries was successfully produced in rats; (2) there was a correlation between the modified Keyes scoring method and micro-CT in the evaluation of the secondary caries; (3) the adhesive containing DMADDM significantly reduced both LD and ML (according to micro-CT), and also lowered the scores (based on the modified Keyes scoring method). This suggests that the novel DMADDM adhesive could perform an anticaries function in vivo via the secondary caries animal model which was also developed and testified in research. Secondary caries is one of the major reasons leading to the failure of caries restoration treatment. As a solution, anticaries adhesives perform well in biofilm inhibition in vitro. However, the lack of secondary caries animal models limits the evaluation of anticaries adhesives in vivo.

    Topics: Animals; Cariostatic Agents; Dental Caries; Dental Cements; Disease Models, Animal; Male; Methacrylates; Quaternary Ammonium Compounds; Rats; Rats, Wistar; X-Ray Microtomography

2018